Advertisement

Journal of High Energy Physics

, 2019:206 | Cite as

Black hole binary dynamics from the double copy and effective theory

  • Zvi Bern
  • Clifford Cheung
  • Radu Roiban
  • Chia-Hsien Shen
  • Mikhail P. Solon
  • Mao ZengEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We describe a systematic framework for computing the conservative potential of a compact binary system using modern tools from scattering amplitudes and effective field theory. Our approach combines methods for integration and matching adapted from effective field theory, generalized unitarity, and the double-copy construction, which relates gravity integrands to simpler gauge-theory expressions. With these methods we derive the third post-Minkowskian correction to the conservative two-body Hamiltonian for spinless black holes. We describe in some detail various checks of our integration methods and the resulting Hamiltonian.

Keywords

Black Holes Classical Theories of Gravity Effective Field Theories Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Supplementary material

13130_2019_11629_MOESM1_ESM.gz (16 kb)
ESM 1 (GZ 15 kb)

References

  1. [1]
    LIGO Scientific, Virgo collaboration, Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett.116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    LIGO Scientific, Virgo collaboration, GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett.119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body dynamics, Phys. Rev.D 59 (1999) 084006 [gr-qc/9811091] [INSPIRE].
  4. [4]
    A. Buonanno and T. Damour, Transition from inspiral to plunge in binary black hole coalescences, Phys. Rev.D 62 (2000) 064015 [gr-qc/0001013] [INSPIRE].
  5. [5]
    F. Pretorius, Evolution of binary black hole spacetimes, Phys. Rev. Lett.95 (2005) 121101 [gr-qc/0507014] [INSPIRE].
  6. [6]
    M. Campanelli, C.O. Lousto, P. Marronetti and Y. Zlochower, Accurate evolutions of orbiting black-hole binaries without excision, Phys. Rev. Lett.96 (2006) 111101 [gr-qc/0511048] [INSPIRE].
  7. [7]
    J.G. Baker et al., Gravitational wave extraction from an inspiraling configuration of merging black holes, Phys. Rev. Lett.96 (2006) 111102 [gr-qc/0511103] [INSPIRE].
  8. [8]
    Y. Mino, M. Sasaki and T. Tanaka, Gravitational radiation reaction to a particle motion, Phys. Rev.D 55 (1997) 3457 [gr-qc/9606018] [INSPIRE].
  9. [9]
    T.C. Quinn and R.M. Wald, An axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved space-time, Phys. Rev.D 56 (1997) 3381 [gr-qc/9610053] [INSPIRE].
  10. [10]
    J. Droste. The field of n moving centres in Einstein’s theory of gravitation, Proc. Acad. Sci. Amst.19 (1916) 447.Google Scholar
  11. [11]
    A. Einstein, L. Infeld and B. Hoffmann, The gravitational equations and the problem of motion, Annals Math.39 (1938) 65.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    B. Bertotti, On gravitational motion, Nuovo Cim.4 (1956) 898.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    R.P. Kerr, The Lorentz-covariant approximation method in general relativity I, Nuovo Cim.13 (1959) 469.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    B. Bertotti and J.F. Plebański, Theory of gravitational perturbations in the fast motion approximation, Ann. Phys.11 (1960) 169.Google Scholar
  15. [15]
    M. Portilla, Momentum and angular momentum of two gravitating particles, J. Phys.A 12 (1979) 1075 [INSPIRE].ADSGoogle Scholar
  16. [16]
    K. Westpfahl and M. Goller, Gravitational scattering of two relativistic particles in postlinear approximation, Lett. Nuovo Cim.26 (1979) 573 [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    M. Portilla, Scattering of two gravitating particles: classical approach, J. Phys.A 13 (1980) 3677 [INSPIRE].ADSGoogle Scholar
  18. [18]
    L. Bel et al., Poincaré-invariant gravitational field and equations of motion of two pointlike objects: The postlinear approximation of general relativity, Gen. Rel. Grav.13 (1981) 963 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    T. Ledvinka, G. Schaefer and J. Bicak, Relativistic closed-form hamiltonian for many-body gravitating systems in the post-Minkowskian approximation, Phys. Rev. Lett.100 (2008) 251101 [arXiv:0807.0214] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    K. Westpfahl, High-speed scattering of charged and uncharged particles in general relativity, Fortschr. Phys.33 (1985) 417.MathSciNetCrossRefGoogle Scholar
  21. [21]
    T. Damour, Gravitational scattering, post-Minkowskian approximation and effective one-body theory, Phys. Rev.D 94 (2016) 104015 [arXiv:1609.00354] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    T. Damour, High-energy gravitational scattering and the general relativistic two-body problem, Phys. Rev.D 97 (2018) 044038 [arXiv:1710.10599] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    W.D. Goldberger and I.Z. Rothstein, An effective field theory of gravity for extended objects, Phys. Rev.D 73 (2006) 104029 [hep-th/0409156] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    L. Blanchet, Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Rel.17 (2014) 2 [arXiv:1310.1528] [INSPIRE].zbMATHCrossRefGoogle Scholar
  25. [25]
    R.A. Porto, The effective field theorist’s approach to gravitational dynamics, Phys. Rept.633 (2016) 1 [arXiv:1601.04914] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    G. Schäfer and P. Jaranowski, Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries, Living Rev. Rel.21 (2018) 7 [arXiv:1805.07240] [INSPIRE].
  27. [27]
    L. Barack and A. Pound, Self-force and radiation reaction in general relativity, Rept. Prog. Phys.82 (2019) 016904 [arXiv:1805.10385] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L. Barack et al., Black holes, gravitational waves and fundamental physics: a roadmap, Class. Quant. Grav.36 (2019) 143001 [arXiv:1806.05195] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M. Levi, Effective field theories of post-Newtonian gravity: a comprehensive review, arXiv:1807.01699 [INSPIRE].
  30. [30]
    T. Ohta, H. Okamura, T. Kimura and K. Hiida, Physically acceptable solution of Einstein’s equation for many-body system, Prog. Theor. Phys.50 (1973) 492 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P. Jaranowski and G. Schaefer, Third postNewtonian higher order ADM Hamilton dynamics for two-body point mass systems, Phys. Rev.D 57 (1998) 7274 [Erratum ibid.D 63 (2001) 029902] [gr-qc/9712075] [INSPIRE].
  32. [32]
    T. Damour, P. Jaranowski and G. Schaefer, Dynamical invariants for general relativistic two-body systems at the third postNewtonian approximation, Phys. Rev.D 62 (2000) 044024 [gr-qc/9912092] [INSPIRE].
  33. [33]
    L. Blanchet and G. Faye, Equations of motion of point particle binaries at the third postNewtonian order, Phys. Lett.A 271 (2000) 58 [gr-qc/0004009] [INSPIRE].
  34. [34]
    T. Damour, P. Jaranowski and G. Schaefer, Dimensional regularization of the gravitational interaction of point masses, Phys. Lett.B 513 (2001) 147 [gr-qc/0105038] [INSPIRE].
  35. [35]
    T. Damour, P. Jaranowski and G. Schäfer, Nonlocal-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems, Phys. Rev.D 89 (2014) 064058 [arXiv:1401.4548] [INSPIRE].
  36. [36]
    P. Jaranowski and G. Schäfer, Derivation of local-in-time fourth post-Newtonian ADM Hamiltonian for spinless compact binaries, Phys. Rev.D 92 (2015) 124043 [arXiv:1508.01016] [INSPIRE].
  37. [37]
    L. Bernard et al., Fokker action of nonspinning compact binaries at the fourth post-Newtonian approximation, Phys. Rev.D 93 (2016) 084037 [arXiv:1512.02876] [INSPIRE].
  38. [38]
    T. Marchand, L. Bernard, L. Blanchet and G. Faye, Ambiguity-free completion of the equations of motion of compact binary systems at the fourth post-Newtonian order, Phys. Rev.D 97 (2018) 044023 [arXiv:1707.09289] [INSPIRE].
  39. [39]
    S. Foffa and R. Sturani, Dynamics of the gravitational two-body problem at fourth post-Newtonian order and at quadratic order in the Newton constant, Phys. Rev.D 87 (2013) 064011 [arXiv:1206.7087] [INSPIRE].
  40. [40]
    S. Foffa, P. Mastrolia, R. Sturani and C. Sturm, Effective field theory approach to the gravitational two-body dynamics, at fourth post-Newtonian order and quintic in the Newton constant, Phys. Rev.D 95 (2017) 104009 [arXiv:1612.00482] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    S. Foffa and R. Sturani, Conservative dynamics of binary systems to fourth post-Newtonian order in the EFT approach I: regularized Lagrangian, Phys. Rev.D 100 (2019) 024047 [arXiv:1903.05113] [INSPIRE].
  42. [42]
    R.A. Porto and I.Z. Rothstein, Apparent ambiguities in the post-Newtonian expansion for binary systems, Phys. Rev.D 96 (2017) 024062 [arXiv:1703.06433] [INSPIRE].
  43. [43]
    S. Foffa, R.A. Porto, I. Rothstein and R. Sturani, Conservative dynamics of binary systems to fourth post-Newtonian order in the EFT approach II: renormalized Lagrangian, Phys. Rev.D 100 (2019) 024048 [arXiv:1903.05118] [INSPIRE].
  44. [44]
    S. Foffa et al., Static two-body potential at fifth post-Newtonian order, Phys. Rev. Lett.122 (2019) 241605 [arXiv:1902.10571] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    J. Blümlein, A. Maier and P. Marquard, Five-loop static contribution to the gravitational interaction potential of two point masses, arXiv:1902.11180 [INSPIRE].
  46. [46]
    J. Feng et al., PoMiN: a post-minkowskian N -body solver, Astrophys. J.859 (2018) 130 [arXiv:1805.00813] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    L. Blanchet and A.S. Fokas, Equations of motion of self-gravitating N -body systems in the first post-Minkowskian approximation, Phys. Rev.D 98 (2018) 084005 [arXiv:1806.08347] [INSPIRE].
  48. [48]
    F. Cachazo and A. Guevara, Leading singularities and classical gravitational scattering, arXiv:1705.10262 [INSPIRE].
  49. [49]
    D. Bini and T. Damour, Gravitational spin-orbit coupling in binary systems, post-Minkowskian approximation and effective one-body theory, Phys. Rev.D 96 (2017) 104038 [arXiv:1709.00590] [INSPIRE].ADSMathSciNetGoogle Scholar
  50. [50]
    J. Vines, Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin and effective-one-body mappings, Class. Quant. Grav.35 (2018) 084002 [arXiv:1709.06016] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    D. Bini and T. Damour, Gravitational spin-orbit coupling in binary systems at the second post-Minkowskian approximation, Phys. Rev.D 98 (2018) 044036 [arXiv:1805.10809] [INSPIRE].
  52. [52]
    A. Guevara, A. Ochirov and J. Vines, Scattering of spinning black holes from exponentiated soft factors, JHEP09 (2019) 056 [arXiv:1812.06895] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  53. [53]
    J. Vines, J. Steinhoff and A. Buonanno, Spinning-black-hole scattering and the test-black-hole limit at second post-Minkowskian order, Phys. Rev.D 99 (2019) 064054 [arXiv:1812.00956] [INSPIRE].
  54. [54]
    M.-Z. Chung, Y.-T. Huang, J.-W. Kim and S. Lee, The simplest massive S-matrix: from minimal coupling to black holes, JHEP04 (2019) 156 [arXiv:1812.08752] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    B. Maybee, D. O’Connell and J. Vines, Observables and amplitudes for spinning particles and black holes, arXiv:1906.09260 [INSPIRE].
  56. [56]
    A. Guevara, A. Ochirov and J. Vines, Black-hole scattering with general spin directions from minimal-coupling amplitudes, arXiv:1906.10071 [INSPIRE].
  57. [57]
    J. Plefka, J. Steinhoff and W. Wormsbecher, Effective action of dilaton gravity as the classical double copy of Yang-Mills theory, Phys. Rev.D 99 (2019) 024021 [arXiv:1807.09859] [INSPIRE].
  58. [58]
    C. Cheung, I.Z. Rothstein and M.P. Solon, From scattering amplitudes to classical potentials in the post-Minkowskian expansion, Phys. Rev. Lett.121 (2018) 251101 [arXiv:1808.02489] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    Z. Bern et al., Scattering amplitudes and the conservative hamiltonian for binary systems at third post-Minkowskian order, Phys. Rev. Lett.122 (2019) 201603 [arXiv:1901.04424] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Koemans Collado, P. Di Vecchia and R. Russo, Revisiting the 2PM eikonal and the dynamics of binary black holes, arXiv:1904.02667 [INSPIRE].
  61. [61]
    A. Cristofoli, N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, On post-Minkowskian Hamiltonians in general relativity, arXiv:1906.01579 [INSPIRE].
  62. [62]
    A. Brandhuber and G. Travaglini, On higher-derivative effects on the gravitational potential and particle bending, arXiv:1905.05657 [INSPIRE].
  63. [63]
    A. Cristofoli, Post-Minkowskian Hamiltonians in modified theories of gravity, arXiv:1906.05209 [INSPIRE].
  64. [64]
    Y. Iwasaki, Quantum theory of gravitation vs. classical theory — Fourth-order potential, Prog. Theor. Phys.46 (1971) 1587 [INSPIRE].
  65. [65]
    Y. Iwasaki, Fourth-order gravitational potential based on quantum field theory, Lett. Nuovo Cim.1S2 (1971) 783 [INSPIRE].
  66. [66]
    S.N. Gupta and S.F. Radford, Improved gravitational coupling of scalar fields, Phys. Rev.D 19 (1979) 1065 [INSPIRE].ADSGoogle Scholar
  67. [67]
    J.F. Donoghue, General relativity as an effective field theory: the leading quantum corrections, Phys. Rev.D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].
  68. [68]
    B.R. Holstein and J.F. Donoghue, Classical physics and quantum loops, Phys. Rev. Lett.93 (2004) 201602 [hep-th/0405239] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    D. Neill and I.Z. Rothstein, Classical space-times from the S matrix, Nucl. Phys.B 877 (2013) 177 [arXiv:1304.7263] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    V. Vaidya, Gravitational spin Hamiltonians from the S matrix, Phys. Rev.D 91 (2015) 024017 [arXiv:1410.5348] [INSPIRE].
  71. [71]
    D.A. Kosower, B. Maybee and D. O’Connell, Amplitudes, Observables and Classical Scattering, JHEP02 (2019) 137 [arXiv:1811.10950] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    A. Antonelli et al., Energetics of two-body Hamiltonians in post-Minkowskian gravity, Phys. Rev.D 99 (2019) 104004 [arXiv:1901.07102] [INSPIRE].ADSMathSciNetGoogle Scholar
  73. [73]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].
  74. [74]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
  75. [75]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e +e to four partons, Nucl. Phys.B 513 (1998) 3 [hep-ph/9708239] [INSPIRE].
  76. [76]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.B 725 (2005) 275 [hep-th/0412103] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  77. [77]
    Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev.D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].ADSMathSciNetGoogle Scholar
  78. [78]
    Z. Bern, L.J. Dixon and D.A. Kosower, Progress in one loop QCD computations, Ann. Rev. Nucl. Part. Sci.46 (1996) 109 [hep-ph/9602280] [INSPIRE].
  79. [79]
    Z. Bern and Y.-t. Huang, Basics of generalized unitarity, J. Phys.A 44 (2011) 454003 [arXiv:1103.1869] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  80. [80]
    J.J.M. Carrasco and H. Johansson, Generic multiloop methods and application to N = 4 super-Yang-Mills, J. Phys.A 44 (2011) 454004 [arXiv:1103.3298] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  81. [81]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys.B 269 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  82. [82]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev.D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
  83. [83]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett.105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  84. [84]
    Z. Bern et al., Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes, Phys. Rev.D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].ADSGoogle Scholar
  85. [85]
    Z. Bern et al., The ultraviolet behavior of N = 8 supergravity at four loops, Phys. Rev. Lett.103 (2009) 081301 [arXiv:0905.2326] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    Z. Bern et al., Ultraviolet properties of N = 4 supergravity at four loops, Phys. Rev. Lett.111 (2013) 231302 [arXiv:1309.2498] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    Z. Bern, S. Davies and T. Dennen, Enhanced ultraviolet cancellations in N = 5 supergravity at four loops, Phys. Rev.D 90 (2014) 105011 [arXiv:1409.3089] [INSPIRE].ADSGoogle Scholar
  88. [88]
    Z. Bern et al., Five-loop four-point integrand of N = 8 supergravity as a generalized double copy, Phys. Rev.D 96 (2017) 126012 [arXiv:1708.06807] [INSPIRE].ADSMathSciNetGoogle Scholar
  89. [89]
    Z. Bern et al., Ultraviolet properties of \( \mathcal{N} \) = 8 supergravity at five loops, Phys. Rev.D 98 (2018) 086021 [arXiv:1804.09311] [INSPIRE].
  90. [90]
    Z. Bern et al., Evanescent effects can alter ultraviolet divergences in quantum gravity without physical consequences, Phys. Rev. Lett.115 (2015) 211301 [arXiv:1507.06118] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    Z. Bern, H.-H. Chi, L. Dixon and A. Edison, Two-loop renormalization of quantum gravity simplified, Phys. Rev.D 95 (2017) 046013 [arXiv:1701.02422] [INSPIRE].
  92. [92]
    F.A. Berends et al., Single bremsstrahlung processes in gauge theories, Phys. Lett.B 103 (1981) 124.ADSCrossRefGoogle Scholar
  93. [93]
    F.A. Berends et al., Multiple Bremsstrahlung in gauge theories at high-energies. 2. Single Bremsstrahlung, Nucl. Phys.B 206 (1982) 61 [INSPIRE].
  94. [94]
    Z. Xu, D.-H. Zhang and L. Chang, Helicity amplitudes for multiple Bremsstrahlung in massless nonabelian gauge theories, Nucl. Phys.B 291 (1987) 392 [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys.B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
  96. [96]
    V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts Modern Physics volume 211, Springer, Germany (2004).Google Scholar
  97. [97]
    M.S. Bianchi and M. Leoni, A QQ → QQ planar double box in canonical form, Phys. Lett.B 777 (2018) 394 [arXiv:1612.05609] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  98. [98]
    T. Damour and G. Esposito-Farese, Gravitational wave versus binary-pulsar tests of strong field gravity, Phys. Rev.D 58 (1998) 042001 [gr-qc/9803031] [INSPIRE].
  99. [99]
    T. Hinderer, Tidal Love numbers of neutron stars, Astrophys. J.677 (2008) 1216 [arXiv:0711.2420] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    T. Damour and A. Nagar, Relativistic tidal properties of neutron stars, Phys. Rev.D 80 (2009) 084035 [arXiv:0906.0096] [INSPIRE].
  101. [101]
    T. Binnington and E. Poisson, Relativistic theory of tidal Love numbers, Phys. Rev.D 80 (2009) 084018 [arXiv:0906.1366] [INSPIRE].
  102. [102]
    B. Kol and M. Smolkin, Black hole stereotyping: induced gravito-static polarization, JHEP02 (2012) 010 [arXiv:1110.3764] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  103. [103]
    N. Gürlebeck, No-hair theorem for black holes in astrophysical environments, Phys. Rev. Lett.114 (2015) 151102 [arXiv:1503.03240] [INSPIRE].
  104. [104]
    R.A. Porto, The tune of love and the nature(ness) of spacetime, Fortsch. Phys.64 (2016) 723 [arXiv:1606.08895] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  105. [105]
    D.N. Kabat and M. Ortiz, Eikonal quantum gravity and Planckian scattering, Nucl. Phys.B 388 (1992) 570 [hep-th/9203082] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    A. Le Tiec, E. Barausse and A. Buonanno, Gravitational self-force correction to the binding energy of compact binary systems, Phys. Rev. Lett.108 (2012) 131103 [arXiv:1111.5609] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    R. Akhoury, R. Saotome and G. Sterman, High energy scattering in perturbative quantum gravity at next to leading power, arXiv:1308.5204 [INSPIRE].
  108. [108]
    N.E.J. Bjerrum-Bohr et al., General relativity from scattering amplitudes, Phys. Rev. Lett.121 (2018) 171601 [arXiv:1806.04920] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    Z. Bern, J.S. Rozowsky and B. Yan, Two loop four gluon amplitudes in N = 4 super-Yang-Mills, Phys. Lett.B 401 (1997) 273 [hep-ph/9702424] [INSPIRE].
  110. [110]
    Z. Bern et al., On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys.B 530 (1998) 401 [hep-th/9802162] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys.B 546 (1999) 423 [hep-th/9811140] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  112. [112]
    M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, Reading, U.S.A. (1995).Google Scholar
  113. [113]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The momentum kernel of gauge and gravity theories, JHEP01 (2011) 001 [arXiv:1010.3933] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  114. [114]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP07 (2011) 092 [arXiv:1104.5224] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  115. [115]
    N.E.J. Bjerrum-Bohr, J.L. Bourjaily, P.H. Damgaard and B. Feng, Manifesting color-kinematics duality in the scattering equation formalism, JHEP09 (2016) 094 [arXiv:1608.00006] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  116. [116]
    C.-H. Fu, Y.-J. Du, R. Huang and B. Feng, Expansion of Einstein-Yang-Mills amplitude, JHEP09 (2017) 021 [arXiv:1702.08158] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  117. [117]
    F. Teng and B. Feng, Expanding Einstein-Yang-Mills by Yang-Mills in CHY frame, JHEP05 (2017) 075 [arXiv:1703.01269] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  118. [118]
    H. Johansson and A. Ochirov, Pure gravities via color-kinematics duality for fundamental matter, JHEP11 (2015) 046 [arXiv:1407.4772] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  119. [119]
    H. Johansson and A. Ochirov, Color-kinematics duality for QCD amplitudes, JHEP01 (2016) 170 [arXiv:1507.00332] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  120. [120]
    H. Johansson and A. Ochirov, Double copy for massive quantum particles with spin, JHEP09 (2019) 040 [arXiv:1906.12292] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  121. [121]
    M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept.200 (1991) 301 [hep-th/0509223] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [INSPIRE].
  123. [123]
    Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys.B 467 (1996) 479 [hep-ph/9511336] [INSPIRE].
  124. [124]
    N.E.J. Bjerrum-Bohr, J.F. Donoghue and P. Vanhove, On-shell techniques and universal results in quantum gravity, JHEP02 (2014) 111 [arXiv:1309.0804] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  125. [125]
    J.C. Collins, Renormalization: an introduction to renormalization, the renormalization group, and the operator product expansion, Cambridge University Press, Camrbidge U.K. (1984).zbMATHCrossRefGoogle Scholar
  126. [126]
    Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys.B 379 (1992) 451 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  127. [127]
    Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two loop QCD amplitudes and coupling shifts, Phys. Rev.D 66 (2002) 085002 [hep-ph/0202271] [INSPIRE].
  128. [128]
    Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP08 (2004) 012 [hep-ph/0404293] [INSPIRE].
  129. [129]
    Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for gluon-gluon scattering in QCD and supersymmetric Yang-Mills theory, JHEP03 (2002) 018 [hep-ph/0201161] [INSPIRE].
  130. [130]
    W. Bonnor, Spherical gravitational waves, Philos. Trans. Roy. Soc. LondonA 251 (1959) 233.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  131. [131]
    W. Bonnor and M. Rotenberg, Gravitational waves from isolated sources, Proc. Roy. Soc. LondonA 289 (1966) 247.ADSMathSciNetGoogle Scholar
  132. [132]
    K.S. Thorne, Multipole expansions of gravitational radiation, Rev. Mod. Phys.52 (1980) 299 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  133. [133]
    L. Blanchet and T. Damour, Tail transported temporal correlations in the dynamics of a gravitating system, Phys. Rev.D 37 (1988) 1410 [INSPIRE].ADSGoogle Scholar
  134. [134]
    L. Blanchet and T. Damour, Hereditary effects in gravitational radiation, Phys. Rev.D 46 (1992) 4304 [INSPIRE].ADSMathSciNetGoogle Scholar
  135. [135]
    C.R. Galley, A.K. Leibovich, R.A. Porto and A. Ross, Tail effect in gravitational radiation reaction: time nonlocality and renormalization group evolution, Phys. Rev.D 93 (2016) 124010 [arXiv:1511.07379] [INSPIRE].ADSMathSciNetGoogle Scholar
  136. [136]
    K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys.B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  137. [137]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
  138. [138]
    A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett.B 254 (1991) 158 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  139. [139]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys.B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].
  140. [140]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim.A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].ADSGoogle Scholar
  141. [141]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
  142. [142]
    P. Maierhöfer, J. Usovitsch and P. Uwer, Kira — A Feynman integral reduction program, Comput. Phys. Commun.230 (2018) 99 [arXiv:1705.05610] [INSPIRE].
  143. [143]
    I. Dubovyk, J. Gluza, T. Riemann and J. Usovitsch, Numerical integration of massive two-loop Mellin-Barnes integrals in Minkowskian regions, PoS(LL2016)034 [arXiv:1607.07538] [INSPIRE].
  144. [144]
    A. Freitas and Y.-C. Huang, On the numerical evaluation of loop integrals with Mellin-Barnes representations, JHEP04 (2010) 074 [arXiv:1001.3243] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  145. [145]
    J. Gluza, T. Jelinski and D.A. Kosower, Efficient evaluation of massive Mellin-Barnes integrals, Phys. Rev.D 95 (2017) 076016 [arXiv:1609.09111] [INSPIRE].
  146. [146]
    J. Gluza, K. Kajda and T. Riemann, AMBRE: A Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals, Comput. Phys. Commun.177 (2007) 879 [arXiv:0704.2423] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  147. [147]
    V.A. Smirnov, Analytical result for dimensionally regularized massless on shell double box, Phys. Lett.B 460 (1999) 397 [hep-ph/9905323] [INSPIRE].
  148. [148]
    J.B. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys. Lett.B 469 (1999) 225 [hep-ph/9909506] [INSPIRE].
  149. [149]
    V.A. Smirnov, Analytical result for dimensionally regularized massless on shell planar triple box, Phys. Lett.B 567 (2003) 193 [hep-ph/0305142] [INSPIRE].
  150. [150]
    G. Heinrich and V.A. Smirnov, Analytical evaluation of dimensionally regularized massive on-shell double boxes, Phys. Lett.B 598 (2004) 55 [hep-ph/0406053] [INSPIRE].
  151. [151]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev.D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].
  152. [152]
    M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun.175 (2006) 559 [hep-ph/0511200] [INSPIRE].
  153. [153]
    A.V. Smirnov and V.A. Smirnov, On the resolution of singularities of multiple Mellin-Barnes integrals, Eur. Phys. J.C 62 (2009) 445 [arXiv:0901.0386] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  154. [154]
    M. Ochman and T. Riemann, MBsums — A Mathematica package for the representation of Mellin-Barnes integrals by multiple sums, Acta Phys. Polon.B 46 (2015) 2117 [arXiv:1511.01323] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  155. [155]
    A.V. Smirnov and M.N. Tentyukov, Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA), Comput. Phys. Commun.180 (2009) 735 [arXiv:0807.4129] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  156. [156]
    A.V. Smirnov, FIESTA4: optimized Feynman integral calculations with GPU support, Comput. Phys. Commun.204 (2016) 189 [arXiv:1511.03614] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  157. [157]
    S. Borowka, J. Carter and G. Heinrich, SecDec: a tool for numerical multi-loop calculations, J. Phys. Conf. Ser.368 (2012) 012051 [arXiv:1206.4908] [INSPIRE].
  158. [158]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev.140 (1965) B516 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  159. [159]
    S.G. Naculich and H.J. Schnitzer, Eikonal methods applied to gravitational scattering amplitudes, JHEP05 (2011) 087 [arXiv:1101.1524] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  160. [160]
    R. Akhoury, R. Saotome and G. Sterman, Collinear and soft divergences in perturbative quantum gravity, Phys. Rev.D 84 (2011) 104040 [arXiv:1109.0270] [INSPIRE].ADSGoogle Scholar
  161. [161]
    A.V. Manohar and I.W. Stewart, The QCD heavy quark potential to order v 2: One loop matching conditions, Phys. Rev.D 62 (2000) 074015 [hep-ph/0003032] [INSPIRE].
  162. [162]
    T. Damour, P. Jaranowski and G. Schaefer, Poincaré invariance in the ADM Hamiltonian approach to the general relativistic two-body problem, Phys. Rev.D 62 (2000) 021501 [Erratum ibid.D 63 (2001) 029903] [gr-qc/0003051] [INSPIRE].
  163. [163]
    N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev.D 67 (2003) 084033 [Erratum ibid.D 71 (2005) 069903] [hep-th/0211072] [INSPIRE].
  164. [164]
    B.R. Holstein and A. Ross, Spin effects in long range gravitational scattering, arXiv:0802.0716 [INSPIRE].
  165. [165]
    N. Wex and G. Schäfer, Innermost stable orbits for coalescing binary systems of compact objects-a remark, Class. Quant. Grav.10 (1993) 2729.Google Scholar
  166. [166]
    D. Bini and T. Damour, Gravitational scattering of two black holes at the fourth post-Newtonian approximation, Phys. Rev.D 96 (2017) 064021 [arXiv:1706.06877] [INSPIRE].
  167. [167]
    D. Amati, M. Ciafaloni and G. Veneziano, Higher order gravitational deflection and soft Bremsstrahlung in Planckian energy superstring collisions, Nucl. Phys.B 347 (1990) 550 [INSPIRE].ADSCrossRefGoogle Scholar
  168. [168]
    Z. Bern and G. Chalmers, Factorization in one loop gauge theory, Nucl. Phys.B 447 (1995) 465 [hep-ph/9503236] [INSPIRE].
  169. [169]
    N.E.J. Bjerrum-Bohr et al., Bending of light in quantum gravity, Phys. Rev. Lett.114 (2015) 061301 [arXiv:1410.7590] [INSPIRE].
  170. [170]
    Z. Bern et al., Gravity amplitudes as generalized double copies of gauge-theory amplitudes, Phys. Rev. Lett.118 (2017) 181602 [arXiv:1701.02519] [INSPIRE].ADSCrossRefGoogle Scholar
  171. [171]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP02 (2008) 002 [arXiv:0712.1851] [INSPIRE].ADSCrossRefGoogle Scholar
  172. [172]
    W. Beenakker and A. Denner, Infrared divergent scalar box integrals with applications in the electroweak standard model, Nucl. Phys.B 338 (1990) 349 [INSPIRE].ADSCrossRefGoogle Scholar
  173. [173]
    P.A. Baikov, Explicit solutions of the three loop vacuum integral recurrence relations, Phys. Lett.B 385 (1996) 404 [hep-ph/9603267] [INSPIRE].
  174. [174]
    P.A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth.A 389 (1997) 347 [hep-ph/9611449] [INSPIRE].
  175. [175]
    A.G. Grozin, Integration by parts: an introduction, Int. J. Mod. Phys.A 26 (2011) 2807 [arXiv:1104.3993] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  176. [176]
    H. Frellesvig and C.G. Papadopoulos, Cuts of Feynman integrals in Baikov representation, JHEP04 (2017) 083 [arXiv:1701.07356] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  177. [177]
    K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev.D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].
  178. [178]
    W.L. Burke and K.S. Thorne, Gravitational radiation damping, in Relativity, M. Carmeli et al. eds., Springer, Germany (1969).Google Scholar
  179. [179]
    K.S. Thorne, Nonradial pulsation of general-relativistic stellar models. IV. The weakfield limit, Astrophys. J.158 (1969) 997 [INSPIRE].
  180. [180]
    W.L. Burke, Gravitational radiation damping of slowly moving systems calculated using matched asymptotic expansions, J. Math. Phys.12 (1971) 401 [INSPIRE].ADSCrossRefGoogle Scholar
  181. [181]
    S. Foffa and R. Sturani, Hereditary terms at next-to-leading order in two-body gravitational dynamics, arXiv:1907.02869 [INSPIRE].
  182. [182]
    S.D. Badger, E.W.N. Glover, V.V. Khoze and P. Svrček, Recursion relations for gauge theory amplitudes with massive particles, JHEP07 (2005) 025 [hep-th/0504159] [INSPIRE].
  183. [183]
    A. Luna et al., The double copy: Bremsstrahlung and accelerating black holes, JHEP06 (2016) 023 [arXiv:1603.05737] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  184. [184]
    W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color charges, Phys. Rev.D 95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].ADSMathSciNetGoogle Scholar
  185. [185]
    W.D. Goldberger, S.G. Prabhu and J.O. Thompson, Classical gluon and graviton radiation from the bi-adjoint scalar double copy, Phys. Rev.D 96 (2017) 065009 [arXiv:1705.09263] [INSPIRE].
  186. [186]
    W.D. Goldberger and A.K. Ridgway, Bound states and the classical double copy, Phys. Rev.D 97 (2018) 085019 [arXiv:1711.09493] [INSPIRE].
  187. [187]
    D. Chester, Radiative double copy for Einstein-Yang-Mills theory, Phys. Rev.D 97 (2018) 084025 [arXiv:1712.08684] [INSPIRE].
  188. [188]
    W.D. Goldberger, J. Li and S.G. Prabhu, Spinning particles, axion radiation and the classical double copy, Phys. Rev.D 97 (2018) 105018 [arXiv:1712.09250] [INSPIRE].ADSMathSciNetGoogle Scholar
  189. [189]
    J. Li and S.G. Prabhu, Gravitational radiation from the classical spinning double copy, Phys. Rev.D 97 (2018) 105019 [arXiv:1803.02405] [INSPIRE].ADSMathSciNetGoogle Scholar
  190. [190]
    C.-H. Shen, Gravitational radiation from color-kinematics duality, JHEP11 (2018) 162 [arXiv:1806.07388] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  191. [191]
    Y.F. Bautista and A. Guevara, From scattering amplitudes to classical physics: universality, double copy and soft theorems, arXiv:1903.12419 [INSPIRE].
  192. [192]
    A. Laddha and A. Sen, Gravity waves from soft theorem in general dimensions, JHEP09 (2018) 105 [arXiv:1801.07719] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  193. [193]
    A. Laddha and A. Sen, Logarithmic terms in the soft expansion in four dimensions, JHEP10 (2018) 056 [arXiv:1804.09193] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  194. [194]
    A. Laddha and A. Sen, Observational signature of the logarithmic terms in the soft graviton theorem, Phys. Rev.D 100 (2019) 024009 [arXiv:1806.01872] [INSPIRE].
  195. [195]
    B. Sahoo and A. Sen, Classical and quantum results on logarithmic terms in the soft theorem in four dimensions, JHEP02 (2019) 086 [arXiv:1808.03288] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  196. [196]
    M. Ciafaloni, D. Colferai and G. Veneziano, Infrared features of gravitational scattering and radiation in the eikonal approach, Phys. Rev.D 99 (2019) 066008 [arXiv:1812.08137] [INSPIRE].
  197. [197]
    A. Laddha and A. Sen, A classical proof of the classical soft graviton theorem in D > 4, arXiv:1906.08288 [INSPIRE].
  198. [198]
    A. PV and A. Manu, Classical double copy from color kinematics duality: a proof in the soft limit, arXiv:1907.10021 [INSPIRE].
  199. [199]
    S.J. Parke and T.R. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett.56 (1986) 2459 [INSPIRE].ADSCrossRefGoogle Scholar
  200. [200]
    M.L. Mangano, S.J. Parke and Z. Xu, Duality and multi-gluon scattering, Nucl. Phys.B 298 (1988) 653 [INSPIRE].ADSCrossRefGoogle Scholar
  201. [201]
    V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys.B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Zvi Bern
    • 1
    • 2
  • Clifford Cheung
    • 3
  • Radu Roiban
    • 4
  • Chia-Hsien Shen
    • 1
  • Mikhail P. Solon
    • 3
  • Mao Zeng
    • 5
    Email author
  1. 1.Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and AstronomyUCLALos AngelesU.S.A.
  2. 2.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  3. 3.Walter Burke Institute for Theoretical PhysicsCalifornia Institute of TechnologyPasadenaU.S.A.
  4. 4.Institute for Gravitation and the CosmosPennsylvania State UniversityUniversity ParkU.S.A.
  5. 5.Institute for Theoretical PhysicsETH ZürichZürichSwitzerland

Personalised recommendations