Advertisement

Journal of High Energy Physics

, 2019:199 | Cite as

The Selfish Higgs

  • G.F. Giudice
  • A. KehagiasEmail author
  • A. Riotto
Open Access
Regular Article - Theoretical Physics
  • 49 Downloads

Abstract

We propose a mechanism to solve the Higgs naturalness problem through a cosmological selection process. The discharging of excited field configurations through membrane nucleation leads to discrete jumps of the cosmological constant and the Higgs mass, which vary in a correlated way. The resulting multitude of universes are all empty, except for those in which the cosmological constant and the Higgs mass are both nearly vanishing. Only under these critical conditions can inflation be activated and create a non-empty universe.

Keywords

Cosmology of Theories beyond the SM Effective Field Theories Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    G. Dvali and A. Vilenkin, Cosmic attractors and gauge hierarchy, Phys. Rev.D 70 (2004) 063501 [hep-th/0304043] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    G. Dvali, Large hierarchies from attractor vacua, Phys. Rev.D 74 (2006) 025018 [hep-th/0410286] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett.115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    N. Arkani-Hamed, T. Cohen, R.T. D’Agnolo, A. Hook, H.D. Kim and D. Pinner, Solving the hierarchy problem at reheating with a large number of degrees of freedom, Phys. Rev. Lett.117 (2016) 251801 [arXiv:1607.06821] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Arvanitaki, S. Dimopoulos, V. Gorbenko, J. Huang and K. Van Tilburg, A small weak scale from a small cosmological constant, JHEP05 (2017) 071 [arXiv:1609.06320] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Herraez and L.E. Ibáñez, An axion-induced SM/MSSM Higgs landscape and the weak gravity conjecture, JHEP02 (2017) 109 [arXiv:1610.08836] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Geller, Y. Hochberg and E. Kuflik, Inflating to the weak scale, Phys. Rev. Lett.122 (2019) 191802 [arXiv:1809.07338] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    C. Cheung and P. Saraswat, Mass hierarchy and vacuum energy, arXiv:1811.12390 [INSPIRE].
  9. [9]
    R. Dawkins, The Selfish gene, Oxford University Press, Oxford, U.K. (1976).Google Scholar
  10. [10]
    A. Aurilia, H. Nicolai and P.K. Townsend, Hidden constants: the θ parameter of QCD and the cosmological constant of N = 8 supergravity, Nucl. Phys.B 176 (1980) 509 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    E. Witten, Fermion quantum numbers in Kaluza-Klein theory, in Proceedings of the 1983 Shelter Island Conference on Quantum Field Theory and the Fundamental Problems of Physics, Conf. Proc.C 8306011 (1983) 227 [INSPIRE].Google Scholar
  12. [12]
    M. Henneaux and C. Teitelboim, The cosmological constant as a canonical variable, Phys. Lett.B 143 (1984) 415 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    J.D. Brown and C. Teitelboim, Dynamical neutralization of the cosmological constant, Phys. Lett.B 195 (1987) 177 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J.D. Brown and C. Teitelboim, Neutralization of the cosmological constant by membrane creation, Nucl. Phys.B 297 (1988) 787 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    M.J. Duff, The cosmological constant is possibly zero, but the proof is probably wrong, Phys. Lett.B 226 (1989) 36 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP06 (2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    J.L. Feng, J. March-Russell, S. Sethi and F. Wilczek, Saltatory relaxation of the cosmological constant, Nucl. Phys.B 602 (2001) 307 [hep-th/0005276] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    G.R. Dvali and A. Vilenkin, Field theory models for variable cosmological constant, Phys. Rev.D 64 (2001) 063509 [hep-th/0102142] [INSPIRE].ADSGoogle Scholar
  19. [19]
    F. Farakos, A. Kehagias, D. Racco and A. Riotto, Scanning of the supersymmetry breaking scale and the gravitino mass in supergravity, JHEP06 (2016) 120 [arXiv:1605.07631] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    N. Kaloper and L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett.102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP03 (2011) 023 [arXiv:1101.0026] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Kaloper and A. Lawrence, Natural chaotic inflation and ultraviolet sensitivity, Phys. Rev.D 90 (2014) 023506 [arXiv:1404.2912] [INSPIRE].ADSGoogle Scholar
  23. [23]
    E. Dudas, Three-form multiplet and inflation, JHEP12 (2014) 014 [arXiv:1407.5688] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].
  25. [25]
    G. Dvali, A vacuum accumulation solution to the strong CP problem, Phys. Rev.D 74 (2006) 025019 [hep-th/0510053] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett.59 (1987) 2607 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M.J. Duncan and L.G. Jensen, Four forms and the vanishing of the cosmological constant, Nucl. Phys.B 336 (1990) 100 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev.D 15 (1977) 2752 [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. de Alwis, R. Gupta, E. Hatefi and F. Quevedo, Stability, tunneling and flux changing de Sitter transitions in the large volume string scenario, JHEP11 (2013) 179 [arXiv:1308.1222] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP12 (2013) 089 [arXiv:1307.3536] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model mass spectrum in inflationary universe, JHEP04 (2017) 058 [arXiv:1612.08122] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    L.E. Parker and D. Toms, Quantum field theory in curved spacetime: quantized field and gravity, Cambridge University Press, Cambridge, U.K. (2009).CrossRefGoogle Scholar
  34. [34]
    M. Herranen, T. Markkanen, S. Nurmi and A. Rajantie, Spacetime curvature and Higgs stability after inflation, Phys. Rev. Lett.115 (2015) 241301 [arXiv:1506.04065] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A.H. Guth and E.J. Weinberg, Could the universe have recovered from a slow first order phase transition?, Nucl. Phys.B 212 (1983) 321 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A.D. Linde, Relaxing the cosmological moduli problem, Phys. Rev.D 53 (1996) R4129 [hep-th/9601083] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Dine, L. Randall and S.D. Thomas, Supersymmetry breaking in the early universe, Phys. Rev. Lett.75 (1995) 398 [hep-ph/9503303] [INSPIRE].
  38. [38]
    L. Knox and M.S. Turner, Inflation at the electroweak scale, Phys. Rev. Lett.70 (1993) 371 [astro-ph/9209006] [INSPIRE].
  39. [39]
    K. Enqvist and M.S. Sloth, Adiabatic CMB perturbations in pre-big bang string cosmology, Nucl. Phys.B 626 (2002) 395 [hep-ph/0109214] [INSPIRE].
  40. [40]
    D.H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys. Lett.B 524 (2002) 5 [hep-ph/0110002] [INSPIRE].
  41. [41]
    T. Moroi and T. Takahashi, Effects of cosmological moduli fields on cosmic microwave background, Phys. Lett.B 522 (2001) 215 [Erratum ibid.B 539 (2002) 303] [hep-ph/0110096] [INSPIRE].
  42. [42]
    J.R. Espinosa, C. Grojean, G. Panico, A. Pomarol, O. Pujolàs and G. Servant, Cosmological Higgs-axion interplay for a naturally small electroweak scale, Phys. Rev. Lett.115 (2015) 251803 [arXiv:1506.09217] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.CERN, Theoretical Physics DepartmentGenevaSwitzerland
  2. 2.Physics DivisionNational Technical University of AthensAthensGreece
  3. 3.Department of Theoretical Physics and Center for Astroparticle Physics (CAP)Geneva 4Switzerland

Personalised recommendations