Journal of High Energy Physics

, 2019:194 | Cite as

Gravitational waves from walking technicolor

  • Kohtaroh Miura
  • Hiroshi OhkiEmail author
  • Saeko Otani
  • Koichi Yamawaki
Open Access
Regular Article - Theoretical Physics


We study gravitational waves from the first-order electroweak phase transition in the SU(Nc) gauge theory with Nf/Nc ≫ 1 (“large Nf QCD”) as a candidate for the walking technicolor, which is modeled by the U(Nf ) × U(Nf ) linear sigma model with classical scale symmetry (without mass term), particularly for Nf = 8 (“one-family model”). This model exhibits spontaneous breaking of the scale symmetry as well as the U(Nf ) × U(Nf ) radiatively through the Coleman-Weinberg mechanism à la Gildener-Weinberg, thus giving rise to a light pseudo dilaton (technidilaton) to be identified with the 125 GeV Higgs. This model possess a strong first-order electroweak phase transition due to the resultant Coleman-Weinberg type potential. We estimate the bubble nucleation that exhibits an ultra supercooling and then the signal for a stochastic gravitational wave produced via the strong first-order electroweak phase transition. We show that the amplitude can be reached to the expected sensitivities of the LISA.


Technicolor and Composite Models Beyond Standard Model Higgs Physics Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    K. Yamawaki, M. Bando and K.-i. Matumoto, Scale Invariant Technicolor Model and a Technidilaton, Phys. Rev. Lett.56 (1986) 1335 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Bando, K.-i. Matumoto and K. Yamawaki, Technidilaton, Phys. Lett.B 178 (1986) 308 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Akiba and T. Yanagida, Hierarchic Chiral Condensate, Phys. Lett.169B (1986) 432 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T.W. Appelquist, D. Karabali and L.C.R. Wijewardhana, Chiral Hierarchies and the Flavor Changing Neutral Current Problem in Technicolor, Phys. Rev. Lett.57 (1986) 957 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    B. Holdom, Techniodor, Phys. Lett.150B (1985) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev.D 13 (1976) 974 [INSPIRE].ADSGoogle Scholar
  7. [7]
    L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev.D 20 (1979) 2619 [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Matsuzaki and K. Yamawaki, Walking on the ladder: 125 GeV technidilaton, or Conformal Higgs, JHEP12 (2015) 053 [Erratum ibid.11 (2016) 158] [arXiv:1508.07688] [INSPIRE].
  9. [9]
    W.E. Caswell, Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop Order, Phys. Rev. Lett.33 (1974) 244 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Banks and A. Zaks, On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions, Nucl. Phys.B 196 (1982) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T. Appelquist, J. Terning and L.C.R. Wijewardhana, The Zero temperature chiral phase transition in SU(N) gauge theories, Phys. Rev. Lett.77 (1996) 1214 [hep-ph/9602385] [INSPIRE].
  12. [12]
    LatKMI collaboration, Walking signals in N f = 8 QCD on the lattice, Phys. Rev.D 87 (2013) 094511 [arXiv:1302.6859] [INSPIRE].
  13. [13]
    LSD collaboration, Lattice simulations with eight flavors of domain wall fermions in SU(3) gauge theory, Phys. Rev.D 90 (2014) 114502 [arXiv:1405.4752] [INSPIRE].
  14. [14]
    A. Hasenfratz, D. Schaich and A. Veernala, Nonperturbative β function of eight-flavor SU(3) gauge theory, JHEP06 (2015) 143 [arXiv:1410.5886] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    LatKMI collaboration, Light composite scalar in eight-flavor QCD on the lattice, Phys. Rev.D 89 (2014) 111502 [arXiv:1403.5000] [INSPIRE].
  16. [16]
    LatKMI collaboration, Light flavor-singlet scalars and walking signals in N f = 8 QCD on the lattice, Phys. Rev.D 96 (2017) 014508 [arXiv:1610.07011] [INSPIRE].
  17. [17]
    T. Appelquist et al., Strongly interacting dynamics and the search for new physics at the LHC, Phys. Rev.D 93 (2016) 114514 [arXiv:1601.04027] [INSPIRE].ADSGoogle Scholar
  18. [18]
    Lattice Strong Dynamics collaboration, Nonperturbative investigations of SU(3) gauge theory with eight dynamical flavors, Phys. Rev.D 99 (2019) 014509 [arXiv:1807.08411] [INSPIRE].
  19. [19]
    C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept.381 (2003) 235 [Erratum ibid.390 (2004) 553] [hep-ph/0203079] [INSPIRE].
  20. [20]
    R.D. Pisarski and F. Wilczek, Remarks on the Chiral Phase Transition in Chromodynamics, Phys. Rev.D 29 (1984) 338 [INSPIRE].ADSGoogle Scholar
  21. [21]
    E. Witten, Cosmic Separation of Phases, Phys. Rev.D 30 (1984) 272 [INSPIRE].ADSGoogle Scholar
  22. [22]
    eLISA collaboration, The Gravitational Universe, arXiv:1305.5720 [INSPIRE].
  23. [23]
    LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].
  24. [24]
    N. Seto, S. Kawamura and T. Nakamura, Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space, Phys. Rev. Lett.87 (2001) 221103 [astro-ph/0108011] [INSPIRE].
  25. [25]
    S. Sato et al., The status of DECIGO, J. Phys. Conf. Ser.840 (2017) 012010 [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    S. Matsuzaki and K. Yamawaki, Dilaton Chiral Perturbation Theory: Determining the Mass and Decay Constant of the Technidilaton on the Lattice, Phys. Rev. Lett.113 (2014) 082002 [arXiv:1311.3784] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Golterman and Y. Shamir, Low-energy effective action for pions and a dilatonic meson, Phys. Rev.D 94 (2016) 054502 [arXiv:1603.04575] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Kasai, K.-i. Okumura and H. Suzuki, A dilaton-pion mass relation, arXiv:1609.02264 [INSPIRE].
  29. [29]
    T. Appelquist, J. Ingoldby and M. Piai, Dilaton EFT Framework For Lattice Data, JHEP07 (2017) 035 [arXiv:1702.04410] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  30. [30]
    M. Hansen, K. Langæble and F. Sannino, Extending Chiral Perturbation Theory with an Isosinglet Scalar, Phys. Rev.D 95 (2017) 036005 [arXiv:1610.02904] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    Y. Meurice, Linear σ-model for multiflavor gauge theories, Phys. Rev.D 96 (2017) 114507 [arXiv:1709.09264] [INSPIRE].ADSGoogle Scholar
  32. [32]
    LSD collaboration, Linear Sigma EFT for Nearly Conformal Gauge Theories, Phys. Rev.D 98 (2018) 114510 [arXiv:1809.02624] [INSPIRE].
  33. [33]
    Y. Chen, M. Huang and Q.-S. Yan, Gravitation waves from QCD and electroweak phase transitions, JHEP05 (2018) 178 [arXiv:1712.03470] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    E. Gildener and S. Weinberg, Symmetry Breaking and Scalar Bosons, Phys. Rev.D 13 (1976) 3333 [INSPIRE].ADSGoogle Scholar
  35. [35]
    A.J. Paterson, Coleman-Weinberg Symmetry Breaking in the Chiral SU(N ) × SU(N ) Linear σ-model, Nucl. Phys.B 190 (1981) 188 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K. Tsumura, M. Yamada and Y. Yamaguchi, Gravitational wave from dark sector with dark pion, JCAP07 (2017) 044 [arXiv:1704.00219] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L. Marzola, A. Racioppi and V. Vaskonen, Phase transition and gravitational wave phenomenology of scalar conformal extensions of the Standard Model, Eur. Phys. J.C 77 (2017) 484 [arXiv:1704.01034] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Aoki, H. Goto and J. Kubo, Gravitational Waves from Hidden QCD Phase Transition, Phys. Rev.D 96 (2017) 075045 [arXiv:1709.07572] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    D. Croon, V. Sanz and G. White, Model Discrimination in Gravitational Wave spectra from Dark Phase Transitions, JHEP08 (2018) 203 [arXiv:1806.02332] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    T. Prokopec, J. Rezacek and B. Świezżewska, Gravitational waves from conformal symmetry breaking, JCAP02 (2019) 009 [arXiv:1809.11129] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  41. [41]
    LatKMI collaboration, Walking and conformal dynamics in many-flavor QCD, PoS(LATTICE2015)213 (2016) [arXiv:1601.02287] [INSPIRE].
  42. [42]
    Y. Aoki et al., Flavor-singlet spectrum in multi-flavor QCD, EPJ Web Conf.175 (2018) 08023 [arXiv:1710.06549] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    V.A. Miransky and K. Yamawaki, Conformal phase transition in gauge theories, Phys. Rev.D 55 (1997) 5051 [Erratum ibid.D 56 (1997) 3768] [hep-th/9611142] [INSPIRE].
  44. [44]
    Y. Kikukawa, M. Kohda and J. Yasuda, First-order restoration of SU(N f ) × SU(N f ) chiral symmetry with large N fand Electroweak phase transition, Phys. Rev.D 77 (2008) 015014 [arXiv:0709.2221] [INSPIRE].ADSGoogle Scholar
  45. [45]
    J. Jia, S. Matsuzaki and K. Yamawaki, Walking technipions at the LHC, Phys. Rev.D 87 (2013) 016006 [arXiv:1207.0735] [INSPIRE].ADSGoogle Scholar
  46. [46]
    S. Weinberg, Gauge and Global Symmetries at High Temperature, Phys. Rev.D 9 (1974) 3357 [INSPIRE].ADSGoogle Scholar
  47. [47]
    L. Dolan and R. Jackiw, Symmetry Behavior at Finite Temperature, Phys. Rev.D 9 (1974) 3320 [INSPIRE].ADSGoogle Scholar
  48. [48]
    D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and Instantons at Finite Temperature, Rev. Mod. Phys.53 (1981) 43 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    M. Quirós, Finite temperature field theory and phase transitions, in Proceedings, Summer School in High-energy physics and cosmology, Trieste, Italy, June 29–July 17, 1998, pp. 187–259 (1999) [hep-ph/9901312] [INSPIRE].
  50. [50]
    J. Ellis, M. Lewicki and J.M. No, On the Maximal Strength of a First-Order Electroweak Phase Transition and its Gravitational Wave Signal, arXiv:1809.08242 [INSPIRE].
  51. [51]
    C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP04 (2016) 001 [arXiv:1512.06239] [INSPIRE].
  52. [52]
    S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev.D 15 (1977) 2929 [Erratum ibid.D 16 (1977) 1248] [INSPIRE].
  53. [53]
    C.G. Callan Jr. and S.R. Coleman, The Fate of the False Vacuum. 2. First Quantum Corrections, Phys. Rev.D 16 (1977) 1762 [INSPIRE].
  54. [54]
    A.D. Linde, Decay of the False Vacuum at Finite Temperature, Nucl. Phys.B 216 (1983) 421 [Erratum ibid.B 223 (1983) 544] [INSPIRE].
  55. [55]
    V. Brdar, A.J. Helmboldt and J. Kubo, Gravitational Waves from First-Order Phase Transitions: LIGO as a Window to Unexplored Seesaw Scales, JCAP02 (2019) 021 [arXiv:1810.12306] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    L. Leitao and A. Megevand, Gravitational waves from a very strong electroweak phase transition, JCAP05 (2016) 037 [arXiv:1512.08962] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    R.-G. Cai, M. Sasaki and S.-J. Wang, The gravitational waves from the first-order phase transition with a dimension-six operator, JCAP08 (2017) 004 [arXiv:1707.03001] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    D. Bödeker and G.D. Moore, Electroweak Bubble Wall Speed Limit, JCAP05 (2017) 025 [arXiv:1703.08215] [INSPIRE].
  59. [59]
    D. Bödeker and G.D. Moore, Can electroweak bubble walls run away?, JCAP05 (2009) 009 [arXiv:0903.4099] [INSPIRE].
  60. [60]
    D.J. Weir, Gravitational waves from a first order electroweak phase transition: a brief review, Phil. Trans. Roy. Soc. Lond.A 376 (2018) 20170126 [arXiv:1705.01783] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  61. [61]
    R. Jinno and M. Takimoto, Gravitational waves from bubble dynamics: Beyond the Envelope, JCAP01 (2019) 060 [arXiv:1707.03111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    K. Hashino, R. Jinno, M. Kakizaki, S. Kanemura, T. Takahashi and M. Takimoto, Selecting models of first-order phase transitions using the synergy between collider and gravitational-wave experiments, Phys. Rev.D 99 (2019) 075011 [arXiv:1809.04994] [INSPIRE].ADSGoogle Scholar
  63. [63]
    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Gravitational waves from the sound of a first order phase transition, Phys. Rev. Lett.112 (2014) 041301 [arXiv:1304.2433] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Numerical simulations of acoustically generated gravitational waves at a first order phase transition, Phys. Rev.D 92 (2015) 123009 [arXiv:1504.03291] [INSPIRE].ADSGoogle Scholar
  65. [65]
    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Shape of the acoustic gravitational wave power spectrum from a first order phase transition, Phys. Rev.D 96 (2017) 103520 [arXiv:1704.05871] [INSPIRE].ADSGoogle Scholar
  66. [66]
    J.T. Giblin Jr. and J.B. Mertens, Vacuum Bubbles in the Presence of a Relativistic Fluid, JHEP12 (2013) 042 [arXiv:1310.2948] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J.T. Giblin and J.B. Mertens, Gravitional radiation from first-order phase transitions in the presence of a fluid, Phys. Rev.D 90 (2014) 023532 [arXiv:1405.4005] [INSPIRE].ADSGoogle Scholar
  68. [68]
    J.R. Espinosa, T. Konstandin, J.M. No and G. Servant, Energy Budget of Cosmological First-order Phase Transitions, JCAP06 (2010) 028 [arXiv:1004.4187] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    C. Caprini, R. Durrer and G. Servant, The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition, JCAP12 (2009) 024 [arXiv:0909.0622] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    P. Binetruy, A. Bohe, C. Caprini and J.-F. Dufaux, Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources, JCAP06 (2012) 027 [arXiv:1201.0983] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Kosowsky, A. Mack and T. Kahniashvili, Gravitational radiation from cosmological turbulence, Phys. Rev.D 66 (2002) 024030 [astro-ph/0111483] [INSPIRE].
  72. [72]
    J.M. Cornwall, R. Jackiw and E. Tomboulis, Effective Action for Composite Operators, Phys. Rev.D 10 (1974) 2428 [INSPIRE].ADSzbMATHGoogle Scholar
  73. [73]
    R. Jinno and M. Takimoto, Gravitational waves from bubble collisions: An analytic derivation, Phys. Rev.D 95 (2017) 024009 [arXiv:1605.01403] [INSPIRE].ADSMathSciNetGoogle Scholar
  74. [74]
    S. Kuroyanagi, K. Nakayama and J. Yokoyama, Prospects of determination of reheating temperature after inflation by DECIGO, PTEP2015 (2015) 013E02 [arXiv:1410.6618] [INSPIRE].
  75. [75]
    K. Yagi and N. Seto, Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries, Phys. Rev.D 83 (2011) 044011 [Erratum ibid.D 95 (2017) 109901] [arXiv:1101.3940] [INSPIRE].
  76. [76]
    K. Hashino, M. Kakizaki, S. Kanemura and T. Matsui, Synergy between measurements of gravitational waves and the triple-Higgs coupling in probing the first-order electroweak phase transition, Phys. Rev.D 94 (2016) 015005 [arXiv:1604.02069] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Kohtaroh Miura
    • 1
    • 2
  • Hiroshi Ohki
    • 3
    Email author
  • Saeko Otani
    • 3
  • Koichi Yamawaki
    • 2
  1. 1.Helmholtz-Institut MainzJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Kobayashi-Maskawa Institute for the Origin of Particles and the UniverseNagoya UniversityNagoyaJapan
  3. 3.Department of PhysicsNara Women’s UniversityNaraJapan

Personalised recommendations