Massive higher spins: effective theory and consistency
Open Access
Regular Article - Theoretical PhysicsFirst Online:
- 30 Downloads
- 3 Citations
Abstract
We construct the effective field theory for a single massive higher-spin particle in flat spacetime. Positivity bounds of the S-matrix force the cutoff of the theory to be well below the naive strong-coupling scale, forbid any potential and make therefore higher- derivative operators important even at low energy. As interesting application, we discuss in detail the massive spin-3 theory and show that an extended Galileon-like symmetry of the longitudinal modes, even with spin, emerges at high energy.
Keywords
Effective Field Theories Scattering Amplitudes Download
to read the full article text
Notes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
References
- [1]A. Kehagias and A. Riotto, On the inflationary perturbations of massive higher-spin fields, JCAP07 (2017) 046 [arXiv:1705.05834] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [2]G. Franciolini, A. Kehagias, A. Riotto and M. Shiraishi, Detecting higher spin fields through statistical anisotropy in the CMB bispectrum, Phys. Rev.D 98 (2018) 043533 [arXiv:1803.03814] [INSPIRE].ADSGoogle Scholar
- [3]L. Bordin, P. Creminelli, A. Khmelnitsky and L. Senatore, Light particles with spin in inflation, JCAP10 (2018) 013 [arXiv:1806.10587] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [4]N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The cosmological bootstrap: inflationary correlators from symmetries and singularities, arXiv:1811.00024 [INSPIRE].
- [5]J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the S matrix, Phys. Rev.D 10 (1974) 1145 [Erratum ibid.D 11 (1975) 972] [INSPIRE].
- [6]N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys.305 (2003) 96 [hep-th/0210184] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [7]X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys.84 (2012) 987 [arXiv:1007.0435] [INSPIRE].ADSCrossRefGoogle Scholar
- [8]R. Rahman, Higher spin theory — part I, PoS(ModaveVIII)004 (2012) [arXiv:1307.3199] [INSPIRE].
- [9]S.R. Coleman and J. Mandula, All possible symmetries of the S matrix, Phys. Rev.159 (1967) 1251 [INSPIRE].ADSCrossRefGoogle Scholar
- [10]S. Weinberg, Photons and gravitons in S matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev.135 (1964) B1049 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [11]M. Porrati and R. Rahman, A model independent ultraviolet cutoff for theories with charged massive higher spin fields, Nucl. Phys.B 814 (2009) 370 [arXiv:0812.4254] [INSPIRE].ADSCrossRefGoogle Scholar
- [12]J. Bonifacio and K. Hinterbichler, Universal bound on the strong coupling scale of a gravitationally coupled massive spin-2 particle, Phys. Rev.D 98 (2018) 085006 [arXiv:1806.10607] [INSPIRE].ADSMathSciNetGoogle Scholar
- [13]S. Caron-Huot, Z. Komargodski, A. Sever and A. Zhiboedov, Strings from massive higher spins: the asymptotic uniqueness of the Veneziano amplitude, JHEP10 (2017) 026 [arXiv:1607.04253] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [14]X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP02 (2016) 020 [arXiv:1407.5597] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [15]N. Afkhami-Jeddi, S. Kundu and A. Tajdini, A bound on massive higher spin particles, JHEP04 (2019) 056 [arXiv:1811.01952] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [16]A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP10 (2006) 014 [hep-th/0602178] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [17]B. Bellazzini, Softness and amplitudes’ positivity for spinning particles, JHEP02 (2017) 034 [arXiv:1605.06111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [18]B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Beyond positivity bounds and the fate of massive gravity, Phys. Rev. Lett.120 (2018) 161101 [arXiv:1710.02539] [INSPIRE].ADSCrossRefGoogle Scholar
- [19]C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett.106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
- [20]C. Fronsdal, Massless fields with integer spin, Phys. Rev.D 18 (1978) 3624 [INSPIRE].ADSGoogle Scholar
- [21]B. de Wit and D.Z. Freedman, Systematics of higher spin gauge fields, Phys. Rev.D 21 (1980) 358 [INSPIRE].ADSMathSciNetGoogle Scholar
- [22]H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].
- [23]K. Hinterbichler, A. Joyce and R.A. Rosen, Eikonal scattering and asymptotic superluminality of massless higher spin fields, Phys. Rev.D 97 (2018) 125019 [arXiv:1712.10021] [INSPIRE].ADSMathSciNetGoogle Scholar
- [24]M. Porrati, Old and new no go theorems on interacting massless particles in flat space, in Proceedings, 17thInternational Seminar on High Energy Physics (Quarks 2012), Yaroslavl, Russia, 4–7 June 2012 [arXiv:1209.4876] [INSPIRE].
- [25]M. Bianchi, P.J. Heslop and F. Riccioni, More on “La Grande Bouffe”, JHEP08 (2005) 088 [hep-th/0504156] [INSPIRE].ADSCrossRefGoogle Scholar
- [26]L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev.D 9 (1974) 898 [INSPIRE].
- [27]R.R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys.B 759 (2006) 147 [hep-th/0512342] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [28]B. Bellazzini, J. Serra, F. Sgarlata and F. Riva, Galileons and effective theory, to appear.Google Scholar
- [29]K. Hinterbichler and A. Joyce, Goldstones with extended shift symmetries, Int. J. Mod. Phys.D 23 (2014) 1443001 [arXiv:1404.4047] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [30]M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev.123 (1961) 1053 [INSPIRE].ADSCrossRefGoogle Scholar
- [31]A. Martin, Extension of the axiomatic analyticity domain of scattering amplitudes by unitarity. 1, Nuovo Cim.A 42 (1965) 930 [INSPIRE].
- [32]C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, UV complete me: positivity bounds for particles with spin, JHEP03 (2018) 011 [arXiv:1706.02712] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [33]C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for massive spin-1 and spin-2 fields, JHEP03 (2019) 182 [arXiv:1804.10624] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [34]J. Bonifacio and K. Hinterbichler, Bounds on amplitudes in effective theories with massive spinning particles, Phys. Rev.D 98 (2018) 045003 [arXiv:1804.08686] [INSPIRE].ADSMathSciNetGoogle Scholar
- [35]J.J. Bonifacio, Aspects of massive spin-2 effective field theories, Ph.D. thesis, Oxford U., Oxford, U.K. (2017) [INSPIRE].
- [36]T. Griffin, K.T. Grosvenor, P. Hǒrava and Z. Yan, Scalar field theories with polynomial shift symmetries, Commun. Math. Phys.340 (2015) 985 [arXiv:1412.1046] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [37]M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP09 (2003) 029 [hep-th/0303116] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [38]G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Aspects of Galileon non-renormalization, JHEP11 (2016) 100 [arXiv:1606.02295] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [39]A. Nicolis, R. Rattazzi and E. Trincherini, Energy’s and amplitudes’ positivity, JHEP05 (2010) 095 [Erratum ibid.11 (2011) 128] [arXiv:0912.4258] [INSPIRE].
- [40]C. Cheung and G.N. Remmen, Positive signs in massive gravity, JHEP04 (2016) 002 [arXiv:1601.04068] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [41]J. Distler, B. Grinstein, R.A. Porto and I.Z. Rothstein, Falsifying models of new physics via W W scattering, Phys. Rev. Lett.98 (2007) 041601 [hep-ph/0604255] [INSPIRE].
- [42]C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Massive Galileon positivity bounds, JHEP09 (2017) 072 [arXiv:1702.08577] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [43]B. Bellazzini, J. Elias-Miro, R. Rattazzi, M. Riembau and F. Riva, Positivity bounds and super-soft amplitudes, to appear.Google Scholar
- [44]C. Englert, G.F. Giudice, A. Greljo and M. Mccullough, The Ĥ -parameter: an oblique Higgs view, JHEP09 (2019) 041 [arXiv:1903.07725] [INSPIRE].ADSCrossRefGoogle Scholar
- [45]J. Bonifacio, K. Hinterbichler and R.A. Rosen, Positivity constraints for pseudolinear massive spin-2 and vector Galileons, Phys. Rev.D 94 (2016) 104001 [arXiv:1607.06084] [INSPIRE].ADSMathSciNetGoogle Scholar
- [46]D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of strong coupling for LHC searches, JHEP11 (2016) 141 [arXiv:1603.03064] [INSPIRE].ADSCrossRefGoogle Scholar
- [47]B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, The other effective fermion compositeness, JHEP11 (2017) 020 [arXiv:1706.03070] [INSPIRE].ADSCrossRefGoogle Scholar
- [48]B. Bellazzini and F. Riva, New phenomenological and theoretical perspective on anomalous Z Z and Z γ processes, Phys. Rev.D 98 (2018) 095021 [arXiv:1806.09640] [INSPIRE].ADSGoogle Scholar
- [49]S. Bruggisser, F. Riva and A. Urbano, Strongly interacting light dark matter, SciPost Phys.3 (2017) 017 [arXiv:1607.02474] [INSPIRE].ADSCrossRefGoogle Scholar
- [50]S. Bruggisser, F. Riva and A. Urbano, The last gasp of dark matter effective theory, JHEP11 (2016) 069 [arXiv:1607.02475] [INSPIRE].ADSCrossRefGoogle Scholar
- [51]B. Bellazzini, M. Lewandowski and J. Serra, Amplitudes’ positivity, weak gravity conjecture and modified gravity, arXiv:1902.03250 [INSPIRE].
- [52]\D. Anselmi, Theory of higher spin tensor currents and central charges, Nucl. Phys.B 541 (1999) 323 [hep-th/9808004] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
Copyright information
© The Author(s) 2019