Advertisement

Journal of High Energy Physics

, 2019:177 | Cite as

Holographic entropy cone with time dependence in two dimensions

  • Bart-lomiej CzechEmail author
  • Xi Dong
Open Access
Regular Article - Theoretical Physics
  • 33 Downloads

Abstract

In holographic duality, if a boundary state has a geometric description that realizes the Ryu-Takayanagi proposal then its entanglement entropies must obey certain inequalities that together define the so-called holographic entropy cone. A large family of such inequalities have been proven under the assumption that the bulk geometry is static, using a method involving contraction maps. By using kinematic space techniques, we show that in two boundary (three bulk) dimensions, all entropy inequalities that can be proven in the static case by contraction maps must also hold in holographic states with time dependence.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The Gravity Dual of a Density Matrix, Class. Quant. Grav.29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    X. Dong, D. Harlow and A.C. Wall, Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality, Phys. Rev. Lett.117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP04 (2015) 163 [arXiv:1411.7041] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A.C. Wall, Maximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, Class. Quant. Grav.31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Lashkari, C. Rabideau, P. Sabella-Garnier and M. Van Raamsdonk, Inviolable energy conditions from entanglement inequalities, JHEP06 (2015) 067 [arXiv:1412.3514] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A Natural Language for AdS/CFT Correlators, JHEP11 (2011) 095 [arXiv:1107.1499] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A.L. Fitzpatrick and J. Kaplan, AdS Field Theory from Conformal Field Theory, JHEP02 (2013) 054 [arXiv:1208.0337] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys.61 (2013) 781 [arXiv:1306.0533] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    T. Hartman, C.A. Keller and B. Stoica, Universal Spectrum of 2d Conformal Field Theory in the Large c Limit, JHEP09 (2014) 118 [arXiv:1405.5137] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP01 (2017) 013 [arXiv:1509.03612] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    C.-M. Chang and Y.-H. Lin, Bootstrap, universality and horizons, JHEP10 (2016) 068 [arXiv:1604.01774] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B. Czech, L. Lamprou and L. Susskind, Entanglement Holonomies, arXiv:1807.04276 [INSPIRE].
  17. [17]
    D. Kabat and G. Lifschytz, Emergence of spacetime from the algebra of total modular Hamiltonians, JHEP05 (2019) 017 [arXiv:1812.02915] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    N. Bao, S. Nezami, H. Ooguri, B. Stoica, J. Sully and M. Walter, The Holographic Entropy Cone, JHEP09 (2015) 130 [arXiv:1505.07839] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    P. Hayden, M. Headrick and A. Maloney, Holographic Mutual Information is Monogamous, Phys. Rev.D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Hernández Cuenca, Holographic entropy cone for five regions, Phys. Rev.D 100 (2019) 026004 [arXiv:1903.09148] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP01 (2012) 102 [arXiv:1110.1607] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Callan, J.-Y. He and M. Headrick, Strong subadditivity and the covariant holographic entanglement entropy formula, JHEP06 (2012) 081 [arXiv:1204.2309] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M. Flory, J. Erdmenger, D. Fernandez, E. Megias, A.-K. Straub and P. Witkowski, Time dependence of entanglement for steady state formation in AdS3 /C F T2 , J. Phys. Conf. Ser.942 (2017) 012010 [arXiv:1709.08614] [INSPIRE].
  24. [24]
    M. Rota and S.J. Weinberg, New constraints for holographic entropy from maximin: A no-go theorem, Phys. Rev.D 97 (2018) 086013 [arXiv:1712.10004] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    N. Bao and M. Mezei, On the Entropy Cone for Large Regions at Late Times, arXiv:1811.00019 [INSPIRE].
  26. [26]
    R.J. Caginalp, The Holographic Entropy Cone in AdS-Vaidya Spacetimes, arXiv:1905.00544 [INSPIRE].
  27. [27]
    M. Freedman and M. Headrick, Bit threads and holographic entanglement, Commun. Math. Phys.352 (2017) 407 [arXiv:1604.00354] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    M. Headrick and V.E. Hubeny, Riemannian and Lorentzian flow-cut theorems, Class. Quant. Grav.35 (2018) 10 [arXiv:1710.09516] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  29. [29]
    I. Bakhmatov, N.S. Deger, J. Gutowski, E.Ó. Colgáin and H. Yavartanoo, Calibrated Entanglement Entropy, JHEP07 (2017) 117 [arXiv:1705.08319] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral Geometry and Holography, JHEP10 (2015) 175 [arXiv:1505.05515] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    S.X. Cui, P. Hayden, T. He, M. Headrick, B. Stoica and M. Walter, Bit Threads and Holographic Monogamy, arXiv:1808.05234 [INSPIRE].
  32. [32]
    V.E. Hubeny, Bulk locality and cooperative flows, JHEP12 (2018) 068 [arXiv:1808.05313] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, Bulk curves from boundary data in holography, Phys. Rev.D 89 (2014) 086004 [arXiv:1310.4204] [INSPIRE].ADSGoogle Scholar
  34. [34]
    V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer, Entwinement and the emergence of spacetime, JHEP01 (2015) 048 [arXiv:1406.5859] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, A Stereoscopic Look into the Bulk, JHEP07 (2016) 129 [arXiv:1604.03110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP08 (2016) 162 [arXiv:1606.03307] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks, JHEP01 (2016) 146 [arXiv:1508.00501] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    Y. Chen, X. Dong, A. Lewkowycz and X.-L. Qi, Modular Flow as a Disentangler, JHEP12 (2018) 083 [arXiv:1806.09622] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev.D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar
  40. [40]
    E.H. Lieb and M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys.14 (1973) 1938 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    M. Headrick and T. Takayanagi, A Holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev.D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    N. Engelhardt and A.C. Wall, Decoding the Apparent Horizon: Coarse-Grained Holographic Entropy, Phys. Rev. Lett.121 (2018) 211301 [arXiv:1706.02038] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Dutta and T. Faulkner, A canonical purification for the entanglement wedge cross-section, arXiv:1905.00577 [INSPIRE].
  44. [44]
    T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
  45. [45]
    S. Nezami and M. Walter, Multipartite Entanglement in Stabilizer Tensor Networks, arXiv:1608.02595 [INSPIRE].
  46. [46]
    V.E. Hubeny, M. Rangamani and M. Rota, Holographic entropy relations, Fortsch. Phys. 66 (2018) 1800067 [arXiv: 1808.07871] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute for Advanced StudyTsinghua UniversityBeijingChina
  2. 2.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.

Personalised recommendations