Advertisement

Journal of High Energy Physics

, 2019:170 | Cite as

Noncommutativity and the weak cosmic censorship

  • Kumar S. Gupta
  • Tajron JurićEmail author
  • Andjelo Samsarov
  • Ivica Smolić
Open Access
Regular Article - Theoretical Physics
  • 44 Downloads

Abstract

We show that a noncommutative massless scalar probe can dress a naked singularity in AdS3 spacetime, consistent with the weak cosmic censorship. The dressing occurs at high energies, which is typical at the Planck scale. Using a noncommutative duality, we show that the dressed singularity has the geometry of a rotating BTZ black hole which satisfies all the laws of black hole thermodynamics. We calculate the entropy and the quasi-normal modes of the dressed singularity and show that the corresponding spacetime can be quantum mechanically complete. The noncommutative duality also gives rise to a light scalar, which can be relevant for early universe cosmology.

Keywords

Black Holes Models of Quantum Gravity Non-Commutative Geometry Spacetime Singularities 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S.W. Hawking, R. Penrose, The singularities of gravitational collapse and cosmology, Proce. Roy. Soc. LondonA 314 (1970) 529.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    R. Penrose, Gravitational collapse: the role of general relativity, Riv. Nuovo Cim.1 (1969) 252 [Gen. Rel. Grav.34 (2002) 1141] [INSPIRE].
  3. [3]
    R. Penrose, Singularities and time-asymmetry, in General relativity: an Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge (1979).Google Scholar
  4. [4]
    R. Penrose, The question of cosmic censorship, J. Astrophys. Astron.20 (1999) 233 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.W. Hawking and R. Penrose, The singularities of gravitational collapse and cosmology, Proc. Roy. Soc. LondonA 314 (1970) 529.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    A. Ashtekar, M. Bojowald and J. Lewandowski, Mathematical structure of loop quantum cosmology, Adv. Theor. Math. Phys.7 (2003) 233 [gr-qc/0304074] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  7. [7]
    A. Ashtekar and M. Bojowald, Quantum geometry and the Schwarzschild singularity, Class. Quant. Grav.23 (2006) 391 [gr-qc/0509075] [INSPIRE].
  8. [8]
    M. Bojowald, Quantum geometry and its implications for black holes, Int. J. Mod. Phys.D 15 (2006) 1545 [gr-qc/0607130] [INSPIRE].
  9. [9]
    A. Yonika, G. Khanna and P. Singh, Von-Neumann stability and singularity resolution in loop quantized Schwarzschild black hole, Class. Quant. Grav.35 (2018) 045007 [arXiv:1709.06331] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    S. Saini and P. Singh, Geodesic completeness and the lack of strong singularities in effective loop quantum Kantowski–Sachs spacetime, Class. Quant. Grav.33 (2016) 245019 [arXiv:1606.04932] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    S.R. Das, String theory and cosmological singularities, Pramana69 (2007) 93.ADSCrossRefGoogle Scholar
  12. [12]
    S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys.53 (2005) 793 [hep-th/0502050] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, Towards singularity and ghost free theories of gravity, Phys. Rev. Lett.108 (2012) 031101 [arXiv:1110.5249] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    L. Bosma, B. Knorr and F. Saueressig, Resolving spacetime singularities within asymptotic safety, Phys. Rev. Lett.123 (2019) 101301 [arXiv:1904.04845] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Saini and D. Stojković, Nonlocal (but also nonsingular) physics at the last stages of gravitational collapse, Phys. Rev.D 89 (2014) 044003 [arXiv:1401.6182] [INSPIRE].ADSGoogle Scholar
  16. [16]
    E. Greenwood and D. Stojkovic, Quantum gravitational collapse: Non-singularity and non-locality, JHEP06 (2008) 042 [arXiv:0802.4087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    J.E. Wang, E. Greenwood and D. Stojković, Schrödinger formalism, black hole horizons and singularity behavior, Phys. Rev.D 80 (2009) 124027 [arXiv:0906.3250] [INSPIRE].ADSGoogle Scholar
  18. [18]
    G.T. Horowitz and D. Marolf, Quantum probes of space-time singularities, Phys. Rev.D 52 (1995) 5670 [gr-qc/9504028] [INSPIRE].
  19. [19]
    S. Hofmann and M. Schneider, Classical versus quantum completeness, Phys. Rev.D 91 (2015) 125028 [arXiv:1504.05580] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    M. Reed and B. Simon, Fourier analysis, self-adjointness, Methods of Modern Mathematical Physics volume 2, Academic Press, New York U.S.A. (1975).Google Scholar
  21. [21]
    P.R. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations, J. Funct. Anal.12 (1973) 401.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    A. Ishibashi and A. Hosoya, Who’s afraid of naked singularities? Probing timelike singularities with finite energy waves, Phys. Rev.D 60 (1999) 104028 [gr-qc/9907009] [INSPIRE].
  23. [23]
    A. Ishibashi and R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 2. General analysis of prescriptions for dynamics, Class. Quant. Grav.20 (2003) 3815 [gr-qc/0305012] [INSPIRE].
  24. [24]
    D.A. Konkowski, T.M. Helliwell and C. Wieland, Quantum singularity of Levi-Civita space-times, Class. Quant. Grav.21 (2004) 265 [gr-qc/0401009] [INSPIRE].
  25. [25]
    R.M. Wald, Note on the stability of the Schwarzschild metric, J. Math. Phys. 20 (1978) 1056 [Erratum ibid.21 (1980) 218].Google Scholar
  26. [26]
    R.M. Wald, Dynamics in nonglobally hyperbolic, static space-times, J. Math. Phys.21 (1980) 2802.ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    D.A. Konkowski and T.M. Helliwell, Understanding singularities — Classical and quantum, Int. J. Mod. Phys.A 31 (2016) 1641007.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett.69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev.D 48 (1993) 1506 [Erratum ibid.D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
  30. [30]
    C. Martinez and J. Zanelli, Back reaction of a conformal field on a three-dimensional black hole, Phys. Rev.D 55 (1997) 3642 [gr-qc/9610050] [INSPIRE].
  31. [31]
    M. Casals, A. Fabbri, C. Martínez and J. Zanelli, Quantum dress for a naked singularity, Phys. Lett.B 760 (2016) 244 [arXiv:1605.06078] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  32. [32]
    M. Casals, A. Fabbri, C. Martínez and J. Zanelli, Quantum backreaction onthree-dimensional black holes and naked singularities, Phys. Rev. Lett.118 (2017) 131102 [arXiv:1608.05366] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J.V. Rocha and V. Cardoso, Gravitational perturbation of the BTZ black hole induced by test particles and weak cosmic censorship in AdS spacetime, Phys. Rev.D 83 (2011) 104037 [arXiv:1102.4352] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    T. Crisford, G.T. Horowitz and J.E. Santos, Testing the weak gravity — Cosmic censorship connection, Phys. Rev.D 97 (2018) 066005 [arXiv:1709.07880] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    G.T. Horowitz and J.E. Santos, Further evidence for the weak gravity — Cosmic censorship connection, JHEP06 (2019) 122 [arXiv:1901.11096] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    D.V. Ahluwalia, Quantum measurements, gravitation and locality, Phys. Lett.B 339 (1994) 301 [gr-qc/9308007] [INSPIRE].
  38. [38]
    S. Doplicher, K. Fredenhagen and J.E. Roberts, Space-time quantization induced by classical gravity, Phys. Lett.B 331 (1994) 39 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Doplicher, K. Fredenhagen and J.E. Roberts, The quantum structure of spacetime at the Planck scale and quantum fields, Commun. Math. Phys.172 (1995) 187.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    M. Burić and J. Madore, Noncommutative de Sitter and FRW spaces, Eur. Phys. J.C 75 (2015) 502 [arXiv:1508.06058] [INSPIRE].
  41. [41]
    M. Burić and D. Latas, Discrete fuzzy de Sitter cosmology, Phys. Rev.D 100 (2019) 024053 [arXiv:1903.08378] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J. Lukierski, H. Ruegg, A. Nowicki and V.N. Tolstoi, Q deformation of Poincaŕe algebra, Phys. Lett.B 264 (1991) 331 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Lukierski and H. Ruegg, Quantum kappa Poincaŕe in any dimension, Phys. Lett.B 329 (1994) 189 [hep-th/9310117] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Majid and H. Ruegg, Bicrossproduct structure of kappa Poincaŕe group and noncommutative geometry, Phys. Lett.B 334 (1994) 348 [hep-th/9405107] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  45. [45]
    P. Schupp and S. Solodukhin, Exact black hole solutions in noncommutative gravity, arXiv:0906.2724 [INSPIRE].
  46. [46]
    B.P. Dolan, K.S. Gupta and A. Stern, Noncommutative BTZ black hole and discrete time, Class. Quant. Grav.24 (2007) 1647 [hep-th/0611233] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    B.P. Dolan, K.S. Gupta and A. Stern, Noncommutativity and quantum structure of spacetime, J. Phys. Conf. Ser.174 (2009) 012023 [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    T. Ohl and A. Schenkel, Cosmological and black hole spacetimes in twisted noncommutative gravity, JHEP10 (2009) 052 [arXiv:0906.2730] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    J.P.M. Pitelli and P.S. Letelier, Quantum singularities in the BTZ spacetime, Phys. Rev.D 77 (2008) 124030 [arXiv:0805.3926] [INSPIRE].ADSMathSciNetGoogle Scholar
  50. [50]
    M. Marcolli and E. Pierpaoli, Early universe models from noncommutative geometry, Adv. Theor. Math. Phys.14 (2010) 1373 [arXiv:0908.3683] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    S. Alexander, R. Brandenberger and J. Magueijo, Noncommutative inflation, Phys. Rev.D 67 (2003) 081301 [hep-th/0108190] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    T.S. Koivisto and D.F. Mota, CMB statistics in noncommutative inflation, JHEP02 (2011) 061 [arXiv:1011.2126] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  53. [53]
    S. Tsujikawa, Quintessence: a review, Class. Quant. Grav.30 (2013) 214003 [arXiv:1304.1961] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    T. Jurić, Quantum space and quantum completeness, JHEP05 (2018) 007 [arXiv:1802.09873] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    K.S. Gupta et al., Effects of noncommutativity on the black hole entropy, Adv. High Energy Phys.2014 (2014) 139172 [arXiv:1312.5100] [INSPIRE].zbMATHCrossRefGoogle Scholar
  56. [56]
    K.S. Guptae t al., Noncommutative scalar quasinormal modes and quantization of entropy of a BTZ black hole, JHEP09 (2015) 025 [arXiv:1505.04068] [INSPIRE].
  57. [57]
    T. Jurić and A. Samsarov, Entanglement entropy renormalization for the noncommutative scalar field coupled to classical BTZ geometry, Phys. Rev.D 93 (2016) 104033 [arXiv:1602.01488] [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    K.S. Gupta, T. Jurić and A. Samsarov, Noncommutative duality and fermionic quasinormal modes of the BTZ black hole, JHEP06 (2017) 107 [arXiv:1703.00514] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    S. Meljanac, A. Samsarov, M. Stojic and K.S. Gupta, Kappa-Minkowski space-time and the star product realizations, Eur. Phys. J.C 53 (2008) 295 [arXiv:0705.2471] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  60. [60]
    T.R. Govindarajan et al., Twisted statistics in kappa-Minkowski spacetime, Phys. Rev.D 77 (2008) 105010 [arXiv:0802.1576] [INSPIRE].ADSGoogle Scholar
  61. [61]
    T. Juric, S. Meljanac and R. Strajn, Twists, realizations and Hopf algebroid structure of kappa-deformed phase space, Int. J. Mod. Phys.A 29 (2014) 1450022 [arXiv:1305.3088] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  62. [62]
    T. Juric, S. Meljanac and D. Pikutic, Realizations of κ-Minkowski space, Drinfeld twists and related symmetry algebras, Eur. Phys. J.C 75 (2015) 528 [arXiv:1506.04955] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    D. Birmingham, Choptuik scaling and quasinormal modes in the AdS/CFT correspondence, Phys. Rev.D 64 (2001) 064024 [hep-th/0101194] [INSPIRE].ADSGoogle Scholar
  64. [64]
    S.-W. Kim, W.T. Kim, Y.-J. Park and H. Shin, Entropy of the BTZ black hole in (2 + 1)-dimensions, Phys. Lett.B 392 (1997) 311 [hep-th/9603043] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    D.V. Singh and S. Siwach, Thermodynamics of BTZ black hole and entanglement entropy, J. Phys. Conf. Ser.481 (2014) 012014 [INSPIRE].CrossRefGoogle Scholar
  66. [66]
    V. Cardoso and J.P.S. Lemos, Scalar, electromagnetic and Weyl perturbations of BTZ black holes: Quasinormal modes, Phys. Rev.D 63 (2001) 124015 [gr-qc/0101052] [INSPIRE].
  67. [67]
    D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett.88 (2002) 151301 [hep-th/0112055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, in Proceedings of the 1978 Stony Brook Conference on Riemann Surfaces and Related Topics, I. Kra and B. Maskit eds., Annals of Mathematics Studies volume 97, Princeton University Press, Princeton U.S.A. (1981).Google Scholar
  69. [69]
    C. McMullen, Riemann surfaces and the geometrization of 3-manifolds, Bull. Am. Math. Soc.27 (1992) 207.MathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    C. McMullen, Iteration on Teichmüller space, Invent. Math.99 (1990) 425.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    D. Birmingham, C. Kennedy, S. Sen and A. Wilkins, Geometrical finiteness, holography, and the Ban˜ados-Teitelboim-Zanelli black hole, Phys. Rev. Lett.82 (1999) 4164.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    D. Birmingham, I. Sachs and S. Sen, Exact results for the BTZ black hole, Int. Jour. Mod. Phys.D 10 (2001) 833 [hep-th/0102155]. .
  73. [73]
    K.S. Gupta and S. Sen, Geometric finiteness and non-quasinormal modes of the BTZ black hole, Phys. Lett.B 618 (2005) 237 [hep-th/0504175] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  74. [74]
    R.M. Wald, General relativity, University of Chicago Press, Chicago U.S.A. (1984).Google Scholar
  75. [75]
    N.R. Pantoja, H. Rago and R.O. Rodriguez, Curvature singularity of the distributional BTZ black hole geometry, J. Math. Phys.45 (2004) 1994 [gr-qc/0205094] [INSPIRE].
  76. [76]
    O. Unver and O. Gurtug, Quantum singularities in (2 + 1) dimensional matter coupled black hole spacetimes, Phys. Rev.D 82 (2010) 084016 [arXiv:1004.2572] [INSPIRE].ADSGoogle Scholar
  77. [77]
    S.K. Chakrabarti, P.R. Giri and K.S. Gupta, Normal mode analysis for scalar fields in BTZ black hole background, Eur. Phys. J.60 (2009) 169 [arXiv:0807.2385] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  78. [78]
    J.M. Maldacena and A. Strominger, AdS3 black holes and a stringy exclusion principle, JHEP12 (1998) 005 [hep-th/9804085] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  79. [79]
    O. Aharony et al., Large N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  80. [80]
    A.W. Peet, TASI lectures on black holes in string theory, in the proceedings of Strings, branes and gravity. Theoretical Advanced Study Institute (TASI’99), May 31–June 25, Boulder, U.S.A. (1999), hep-th/0008241 [INSPIRE].
  81. [81]
    M. Cvetič and F. Larsen, Statistical entropy of four-dimensional rotating black holes from near-horizon geometry, Phys. Rev. Lett.82 (1999) 484 [hep-th/9805146] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    K. Sfetsos and K. Skenderis, Microscopic derivation of the Bekenstein-Hawking entropy formula for nonextremal black holes, Nucl. Phys.B 517 (1998) 179 [hep-th/9711138] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  83. [83]
    M.D. Ćirić, N. Konjik and A. Samsarov, Noncommutative scalar quasinormal modes of the Reissner-Nordström black hole, Class. Quant. Grav.35 (2018) 175005 [arXiv:1708.04066] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  84. [84]
    M.D. Ćirić, N. Konjik and A. Samsarov, Noncommutative scalar field in the non-extremal Reissner-Nordström background: QNM spectrum, arXiv:1904.04053 [INSPIRE].
  85. [85]
    T. Jurić et al., Some physical aspects of NC Reissner-Nordström black hole, in preparation.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Kumar S. Gupta
    • 1
  • Tajron Jurić
    • 2
    Email author
  • Andjelo Samsarov
    • 2
  • Ivica Smolić
    • 3
  1. 1.Theory DivisionSaha Institute of Nuclear PhysicsCalcuttaIndia
  2. 2.Rudjer Bošković InstituteZagrebCroatia
  3. 3.Department of Physics, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations