Journal of High Energy Physics

, 2019:168 | Cite as

Search for muon-philic new light gauge boson at Belle II

  • Yongsoo Jho
  • Youngjoon Kwon
  • Seong Chan ParkEmail author
  • Po-Yan Tseng
Open Access
Regular Article - Theoretical Physics


Motivated by the long-lasting 3.5σ discrepancy in the anomalous magnetic moment of muon, we consider a new muon-specific force mediated by a light gauge boson, X, with mass mX < 2mμ and the coupling constant gX ∼ (10−4, 10−3) . We show that the Belle II experiment has a robust chance to probe such a light boson in e+e → μ+μ + X channel and cover the most interesting parameter space explaining the discrepancy with the planned target luminosity, \( \int dt\ \mathcal{L}=50\ {\mathrm{ab}}^{-1} \). The clean signal of muon-pair plus missing energy at Belle II can be a smoking gun for the new gauge boson. We expect that the (invisibly decaying) muon-philic light (mX ≲ 2mμ) gauge boson can be probed down to gX ≲ 1.5 × 10−4(4.6 × 10−4,  2.3 × 10−4) for 50 (1, 10) ab−1 search.


Beyond Standard Model Gauge Symmetry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP12 (2013) 089 [arXiv:1307.3536] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Y. Hamada, H. Kawai, K.Y. Oda and S.C. Park, Higgs inflation is still alive after the results from BICEP2, Phys. Rev. Lett.112 (2014) 241301 [arXiv:1403.5043] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Y. Hamada, H. Kawai, K.Y. Oda and S.C. Park, Higgs inflation from standard model criticality, Phys. Rev.D 91 (2015) 053008 [arXiv:1408.4864] [INSPIRE].ADSGoogle Scholar
  5. [5]
    RBC, UKQCD collaboration, Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, Phys. Rev. Lett.121 (2018) 022003 [arXiv:1801.07224] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].Google Scholar
  7. [7]
    Muon g-2 collaboration, Precise measurement of the positive muon anomalous magnetic moment, Phys. Rev. Lett.86 (2001) 2227 [hep-ex/0102017] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    Muon g-2 collaboration, Measurement of the negative muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett.92 (2004) 161802 [hep-ex/0401008] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev.D 53 (1996) 6565 [Erratum ibid.D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].
  10. [10]
    M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev.D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Czarnecki and W.J. Marciano, The muon anomalous magnetic moment: a harbinger for ‘new physics’, Phys. Rev.D 64 (2001) 013014 [hep-ph/0102122] [INSPIRE].
  12. [12]
    S.C. Park and J.H. Song, Phenomenology of the heavy BH in a littlest Higgs model, Phys. Rev.D 69 (2004) 115010 [hep-ph/0306112] [INSPIRE].ADSGoogle Scholar
  13. [13]
    S.C. Park and H.S. Song, Muon anomalous magnetic moment and the stabilized Randall-Sundrum scenario, Phys. Lett.B 506 (2001) 99 [hep-ph/0103072] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Jegerlehner and A. Nyffeler, The muon g − 2, Phys. Rept.477 (2009) 1 [arXiv:0902.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Battaglieri et al., US cosmic visions: new ideas in dark matter 2017: community report, arXiv:1707.04591 [INSPIRE].
  16. [16]
    G. Mohlabeng, Revisiting the dark photon explanation of the muon anomalous magnetic moment, Phys. Rev.D 99 (2019) 115001 [arXiv:1902.05075] [INSPIRE].ADSGoogle Scholar
  17. [17]
    Belle-II collaboration, Belle II technical design report, arXiv:1011.0352 [INSPIRE].
  18. [18]
    Belle-II collaboration, The Belle II experiment, Nucl. Part. Phys. Proc.260 (2015) 233 [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    BaBar collaboration, Search for a dark photon in e +e collisions at BaBar, Phys. Rev. Lett.113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    BaBar collaboration, Search for invisible decays of a dark photon produced in e +e collisions at BaBar, Phys. Rev. Lett.119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Y. Kaneta and T. Shimomura, On the possibility of a search for the L μ − L τgauge boson at Belle-II and neutrino beam experiments, PTEP2017 (2017) 053B04 [arXiv:1701.00156] [INSPIRE].Google Scholar
  22. [22]
    T. Araki, S. Hoshino, T. Ota, J. Sato and T. Shimomura, Detecting the L μ − L τgauge boson at Belle II, Phys. Rev.D 95 (2017) 055006 [arXiv:1702.01497] [INSPIRE].ADSGoogle Scholar
  23. [23]
    Y. Kahn, G. Krnjaic, N. Tran and A. Whitbeck, M 3: a new muon missing momentum experiment to probe (g − 2)μand dark matter at Fermilab, JHEP09 (2018) 153 [arXiv:1804.03144] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.A. Dror, R. Lasenby and M. Pospelov, New constraints on light vectors coupled to anomalous currents, Phys. Rev. Lett.119 (2017) 141803 [arXiv:1705.06726] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J.A. Dror, R. Lasenby and M. Pospelov, Dark forces coupled to nonconserved currents, Phys. Rev.D 96 (2017) 075036 [arXiv:1707.01503] [INSPIRE].ADSGoogle Scholar
  26. [26]
    L3 collaboration, Search for new physics in energetic single photon production in e +e annihilation at the Z resonance, Phys. Lett.B 412 (1997) 201 [INSPIRE].ADSGoogle Scholar
  27. [27]
    Belle collaboration, Search forB → hν ν̄ decays with semileptonic tagging at Belle, Phys. Rev.D 96 (2017) 091101 [arXiv:1702.03224] [INSPIRE].ADSGoogle Scholar
  28. [28]
    E949 collaboration, New measurement of the K + → π + νν̄ branching ratio, Phys. Rev. Lett.101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    CHARM collaboration, Search for axion like particle production in 400 GeV proton-copper interactions, Phys. Lett.B 157 (1985) 458.Google Scholar
  30. [30]
    J. Blümlein and J. Brunner, New exclusion limits on dark gauge forces from proton Bremsstrahlung in beam-dump data, Phys. Lett.B 731 (2014) 320 [arXiv:1311.3870] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. Blumlein and J. Brunner, New exclusion limits for dark gauge forces from beam-dump data, Phys. Lett.B 701 (2011) 155 [arXiv:1104.2747] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S.N. Gninenko, Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays, Phys. Lett.B 713 (2012) 244 [arXiv:1204.3583] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P. Foldenauer, Light dark matter in a gauged U(1) L μ − L τmodel, Phys. Rev.D 99 (2019) 035007 [arXiv:1808.03647] [INSPIRE].ADSGoogle Scholar
  34. [34]
    C.D. Carone and H. Murayama, Possible light U(1) gauge boson coupled to baryon number, Phys. Rev. Lett.74 (1995) 3122 [hep-ph/9411256] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino trident production: a powerful probe of new physics with neutrino beams, Phys. Rev. Lett.113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    CCFR collaboration, Neutrino tridents and W Z interference, Phys. Rev. Lett.66 (1991) 3117 [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    G. Krnjaic, G. Marques-Tavares, D. Redigolo and K. Tobioka, Probing muonic forces and dark matter at kaon factories, arXiv:1902.07715 [INSPIRE].
  38. [38]
    C.-W. Chiang and P.-Y. Tseng, Probing a dark photon using rare leptonic kaon and pion decays, Phys. Lett.B 767 (2017) 289 [arXiv:1612.06985] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    BaBar collaboration, Search for a muonic dark force at BABAR, Phys. Rev.D 94 (2016) 011102 [arXiv:1606.03501] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Kamada and H.-B. Yu, Coherent propagation of PeV neutrinos and the dip in the neutrino spectrum at IceCube, Phys. Rev.D 92 (2015) 113004 [arXiv:1504.00711] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Kamada, K. Kaneta, K. Yanagi and H.-B. Yu, Self-interacting dark matter and muon g − 2 in a gauged U(1) L μ − L τmodel, JHEP06 (2018) 117 [arXiv:1805.00651] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Escudero, D. Hooper, G. Krnjaic and M. Pierre, Cosmology with a very light L μ − L τgauge boson, JHEP03 (2019) 071 [arXiv:1901.02010] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  43. [43]
    C.-H. Chen and T. Nomura, L μ − L τgauge-boson production from lepton flavor violating τ decays at Belle II, Phys. Rev.D 96 (2017) 095023 [arXiv:1704.04407] [INSPIRE].
  44. [44]
    H. Banerjee and S. Roy, Signatures of supersymmetry and Lμ –Lτ gauge bosons at Belle-II, Phys. Rev.D 99 (2019) 035035 [arXiv:1811.00407] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Bauer, P. Foldenauer and J. Jaeckel, Hunting all the hidden photons, JHEP07 (2018) 094 [arXiv:1803.05466] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    H.K. Dreiner, J.-F. Fortin, J. Isern and L. Ubaldi, White dwarfs constrain dark forces, Phys. Rev.D 88 (2013) 043517 [arXiv:1303.7232] [INSPIRE].ADSGoogle Scholar
  47. [47]
    T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results, Phys. Rev.D 93 (2016) 023527 [arXiv:1506.03811] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Ciafaloni, P. Ciafaloni and D. Comelli, Towards collinear evolution equations in electroweak theory, Phys. Rev. Lett.88 (2002) 102001 [hep-ph/0111109] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    P. Ciafaloni and D. Comelli, Electroweak evolution equations, JHEP11 (2005) 022 [hep-ph/0505047] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. Ciafaloni et al., Weak corrections are relevant for dark matter indirect detection, JCAP03 (2011) 019 [arXiv:1009.0224] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].ADSGoogle Scholar
  52. [52]
    Belle-II collaboration, Detectors for extreme luminosity: Belle II, Nucl. Instrum. Meth.A 907 (2018) 46 [INSPIRE].
  53. [53]
    BaBar collaboration, J/ψ production via initial state radiation in e +e  → μ +μ γ at an e +e center-of-mass energy near 10.6 GeV, Phys. Rev.D 69 (2004) 011103 [hep-ex/0310027] [INSPIRE].
  54. [54]
    S. Banerjee, B. Pietrzyk, J.M. Roney and Z. Was, Tau and muon pair production cross-sections in electron-positron annihilations at \( \sqrt{S}=10.58 \)GeV, Phys. Rev.D 77 (2008) 054012 [arXiv:0706.3235] [INSPIRE].ADSGoogle Scholar
  55. [55]
    F. Scheck, Muon physics, Phys. Rept.44 (1978) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    OPAL collaboration, Measurement of the Michel parameters in leptonic τ decays, Eur. Phys. J.C 8 (1999) 3 [hep-ex/9808016] [INSPIRE].ADSGoogle Scholar
  57. [57]
    K. Hagiwara, T. Li, K. Mawatari and J. Nakamura, TauDecay: a library to simulate polarized τ decays via FeynRules and MadGraph5, Eur. Phys. J.C 73 (2013) 2489 [arXiv:1212.6247] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Alloul et al., FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J. Alwall et al., MadGraph 5: going beyond, JHEP06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  60. [60]
    Belle-II collaboration, The belle II physics book, arXiv:1808.10567 [INSPIRE].
  61. [61]
    S.N. Gninenko, N.V. Krasnikov and V.A. Matveev, Muon g − 2 and searches for a new leptophobic sub-GeV dark boson in a missing-energy experiment at CERN, Phys. Rev.D 91 (2015) 095015 [arXiv:1412.1400] [INSPIRE].ADSGoogle Scholar
  62. [62]
    P. Ballett et al., Z’ s in neutrino scattering at DUNE, Phys. Rev.D 100 (2019) 055012 [arXiv:1902.08579] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and IPAPYonsei UniversitySeoulRepublic of Korea
  2. 2.Kavli IPMU (WPI), UTIASThe University of TokyoChibaJapan

Personalised recommendations