Advertisement

Journal of High Energy Physics

, 2019:155 | Cite as

Lifting of states in 2-dimensional N = 4 supersymmetric CFTs

  • Bin GuoEmail author
  • Samir D. Mathur
Open Access
Regular Article - Theoretical Physics
  • 23 Downloads

Abstract

We consider states of the D1-D5 CFT where only the left-moving sector is excited. As we deform away from the orbifold point, some of these states will remain BPS while others can ‘lift’. The lifting can be computed by a path integral containing two twist deformations; however, the relevant 4-point amplitude cannot be computed explicitly in many cases. We analyze an older proposal by Gava and Narain where the lift can be computed in terms of a finite number of 3-point functions. A direct Hamiltonian decomposition of the path integral involves an infinite number of 3-point functions, as well the first order correction to the starting state. We note that these corrections to the state account for the infinite number of 3-point functions arising from higher energy states, and one can indeed express the path-integral result in terms of a finite number of 3-point functions involving only the leading order states that are degenerate. The first order correction to the super-charge \( {\overline{G}}^{(1)} \) gets replaced by a projection \( {\overline{G}}^{(P)} \); this projected operator can also be used to group the states into multiplets whose members have the same lifting.

Keywords

Conformal Field Theory Extended Supersymmetry AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett.B 379 (1996) 99 [hep-th/9601029] [INSPIRE].
  2. [2]
    C.G. Callan and J.M. Maldacena, D-brane approach to black hole quantum mechanics, Nucl. Phys.B 472 (1996) 591 [hep-th/9602043] [INSPIRE].
  3. [3]
    S.R. Das and S.D. Mathur, Comparing decay rates for black holes and D-branes, Nucl. Phys.B 478 (1996) 561 [hep-th/9606185] [INSPIRE].
  4. [4]
    J.M. Maldacena and A. Strominger, Black hole grey body factors and D-brane spectroscopy, Phys. Rev.D 55 (1997) 861 [hep-th/9609026] [INSPIRE].
  5. [5]
    C. Vafa, Instantons on D-branes, Nucl. Phys.B 463 (1996) 435 [hep-th/9512078] [INSPIRE].
  6. [6]
    R. Dijkgraaf, Instanton strings and hyperKähler geometry, Nucl. Phys.B 543 (1999) 545 [hep-th/9810210] [INSPIRE].
  7. [7]
    N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP04 (1999) 017 [hep-th/9903224] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    F. Larsen and E.J. Martinec, U(1) charges and moduli in the D1-D5 system, JHEP06 (1999) 019 [hep-th/9905064] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    G.E. Arutyunov and S.A. Frolov, Virasoro amplitude from the S NR 24orbifold σ-model, Theor. Math. Phys.114 (1998) 43 [hep-th/9708129] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    G.E. Arutyunov and S.A. Frolov, Four graviton scattering amplitude from S NR 8supersymmetric orbifold σ-model, Nucl. Phys.B 524 (1998) 159 [hep-th/9712061] [INSPIRE].
  11. [11]
    A. Jevicki, M. Mihailescu and S. Ramgoolam, Gravity from CFT on S N (X ): Symmetries and interactions, Nucl. Phys.B 577 (2000) 47 [hep-th/9907144] [INSPIRE].
  12. [12]
    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept.369 (2002) 549 [hep-th/0203048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    J.M. Maldacena, G.W. Moore and A. Strominger, Counting BPS black holes in toroidal Type II string theory, hep-th/9903163 [INSPIRE].
  14. [14]
    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys.B 623 (2002) 342 [hep-th/0109154] [INSPIRE].
  15. [15]
    S.D. Mathur, The Fuzzball proposal for black holes: An Elementary review, Fortsch. Phys.53 (2005) 793 [hep-th/0502050] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP06 (2007) 056 [arXiv:0704.0690] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys.755 (2008) 1 [hep-th/0701216] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    B.D. Chowdhury and A. Virmani, Modave Lectures on Fuzzballs and Emission from the D1-D5 System, in 5th Modave Summer School in Mathematical Physics, Modave, Belgium, 17–21 August 2009 (2010) [arXiv:1001.1444] [INSPIRE].
  19. [19]
    M.R. Gaberdiel, C. Peng and I.G. Zadeh, Higgsing the stringy higher spin symmetry, JHEP10 (2015) 101 [arXiv:1506.02045] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    C.A. Keller and I.G. Zadeh, Lifting 1-BPS States on K 3 and Mathieu Moonshine, arXiv:1905.00035 [INSPIRE].
  21. [21]
    S. Hampton, S.D. Mathur and I.G. Zadeh, Lifting of D1-D5-P states, JHEP01 (2019) 075 [arXiv:1804.10097] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    O. Lunin and S.D. Mathur, Correlation functions for M N/S Norbifolds, Commun. Math. Phys.219 (2001) 399 [hep-th/0006196] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    O. Lunin and S.D. Mathur, Three point functions for M N/S Norbifolds with N = 4 supersymmetry, Commun. Math. Phys.227 (2002) 385 [hep-th/0103169] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    E. Gava and K.S. Narain, Proving the PP-wave/CFT2 duality, JHEP12 (2002) 023 [hep-th/0208081] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Pakman, L. Rastelli and S.S. Razamat, Diagrams for Symmetric Product Orbifolds, JHEP10 (2009) 034 [arXiv:0905.3448] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Pakman, L. Rastelli and S.S. Razamat, Extremal Correlators and Hurwitz Numbers in Symmetric Product Orbifolds, Phys. Rev.D 80 (2009) 086009 [arXiv:0905.3451] [INSPIRE].
  27. [27]
    A. Pakman, L. Rastelli and S.S. Razamat, A Spin Chain for the Symmetric Product CFT(2), JHEP05 (2010) 099 [arXiv:0912.0959] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S.G. Avery, B.D. Chowdhury and S.D. Mathur, Deforming the D1D5 CFT away from the orbifold point, JHEP06 (2010) 031 [arXiv:1002.3132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    S.G. Avery, B.D. Chowdhury and S.D. Mathur, Excitations in the deformed D1D5 CFT, JHEP06 (2010) 032 [arXiv:1003.2746] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    B.A. Burrington, A.W. Peet and I.G. Zadeh, Operator mixing for string states in the D1-D5 CFT near the orbifold point, Phys. Rev.D 87 (2013) 106001 [arXiv:1211.6699] [INSPIRE].
  31. [31]
    B.A. Burrington, A.W. Peet and I.G. Zadeh, Twist-nontwist correlators in M N/S Norbifold CFTs, Phys. Rev.D 87 (2013) 106008 [arXiv:1211.6689] [INSPIRE].
  32. [32]
    B.A. Burrington, S.D. Mathur, A.W. Peet and I.G. Zadeh, Analyzing the squeezed state generated by a twist deformation, Phys. Rev.D 91 (2015) 124072 [arXiv:1410.5790] [INSPIRE].
  33. [33]
    B.A. Burrington, I.T. Jardine and A.W. Peet, Operator mixing in deformed D1D5 CFT and the OPE on the cover, JHEP06 (2017) 149 [arXiv:1703.04744] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    Z. Carson, S. Hampton and S.D. Mathur, Full action of two deformation operators in the D1D5 CFT, JHEP11 (2017) 096 [arXiv:1612.03886] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    Z. Carson, S. Hampton and S.D. Mathur, One-Loop Transition Amplitudes in the D1D5 CFT, JHEP01 (2017) 006 [arXiv:1606.06212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    Z. Carson, S. Hampton and S.D. Mathur, Second order effect of twist deformations in the D1D5 CFT, JHEP04 (2016) 115 [arXiv:1511.04046] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  37. [37]
    Z. Carson, S. Hampton, S.D. Mathur and D. Turton, Effect of the deformation operator in the D1D5 CFT, JHEP01 (2015) 071 [arXiv:1410.4543] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Z. Carson, S.D. Mathur and D. Turton, Bogoliubov coefficients for the twist operator in the D1D5 CFT, Nucl. Phys.B 889 (2014) 443 [arXiv:1406.6977] [INSPIRE].
  39. [39]
    Z. Carson, S. Hampton, S.D. Mathur and D. Turton, Effect of the twist operator in the D1D5 CFT, JHEP08 (2014) 064 [arXiv:1405.0259] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    L.P. Kadanoff, Multicritical behavior at the kosterlitz-thouless critical point Annals Phys.120 (1979) 39.ADSCrossRefGoogle Scholar
  41. [41]
    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, On Moduli Spaces Of Conformal Field Theories With C ≥ 1, in Copenhagen 1987, Proceedings, Perspectives In String Theory, pp. 117–137 [INSPIRE].
  42. [42]
    J.L. Cardy, Continuously Varying Exponents and the Value of the Central Charge, J. Phys.A 20 (1987) L891 [INSPIRE].
  43. [43]
    H. Eberle, Twistfield perturbations of vertex operators in the Z(2) orbifold model, JHEP06 (2002) 022 [hep-th/0103059] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    H. Eberle, Twistfield perturbations of vertex operators in the Z(2) orbifold model, Ph.D. Thesis, University of Bonn, Bonn (2006).Google Scholar
  45. [45]
    M.R. Gaberdiel, A. Konechny and C. Schmidt-Colinet, Conformal perturbation theory beyond the leading order, J. Phys.A 42 (2009) 105402 [arXiv:0811.3149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    D. Berenstein and A. Miller, Conformal perturbation theory, dimensional regularization and AdS/CFT correspondence, Phys. Rev.D 90 (2014) 086011 [arXiv:1406.4142] [INSPIRE].
  47. [47]
    D. Berenstein and A. Miller, Logarithmic enhancements in conformal perturbation theory and their real time interpretation, arXiv:1607.01922 [INSPIRE].
  48. [48]
    J. de Boer, J. Manschot, K. Papadodimas and E. Verlinde, The Chiral ring of AdS 3/C F T2 and the attractor mechanism, JHEP03 (2009) 030 [arXiv:0809.0507] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    A. Sen, On the Background Independence of String Field Theory, Nucl. Phys.B 345 (1990) 551 [INSPIRE].
  50. [50]
    A. Sen, Background Independence of Closed Superstring Field Theory, JHEP02 (2018) 155 [arXiv:1711.08468] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    M. Campbell, P.C. Nelson and E. Wong, Stress tensor perturbations in conformal field theory, Int. J. Mod. Phys.A 6 (1991) 4909 [INSPIRE].
  52. [52]
    M. Evans and B.A. Ovrut, Deformations of Conformal Field Theories and Symmetries of the String, Phys. Rev.D 41 (1990) 3149 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsThe Ohio State UniversityColumbusU.S.A.

Personalised recommendations