# Lifting of states in 2-dimensional *N* = 4 supersymmetric CFTs

- 23 Downloads

## Abstract

We consider states of the D1-D5 CFT where only the left-moving sector is excited. As we deform away from the orbifold point, some of these states will remain BPS while others can ‘lift’. The lifting can be computed by a path integral containing two twist deformations; however, the relevant 4-point amplitude cannot be computed explicitly in many cases. We analyze an older proposal by Gava and Narain where the lift can be computed in terms of a finite number of 3-point functions. A direct Hamiltonian decomposition of the path integral involves an infinite number of 3-point functions, as well the first order correction to the starting state. We note that these corrections to the state account for the infinite number of 3-point functions arising from higher energy states, and one can indeed express the path-integral result in terms of a finite number of 3-point functions involving only the leading order states that are degenerate. The first order correction to the super-charge \( {\overline{G}}^{(1)} \) gets replaced by a projection \( {\overline{G}}^{(P)} \); this projected operator can also be used to group the states into multiplets whose members have the same lifting.

## Keywords

Conformal Field Theory Extended Supersymmetry AdS-CFT Correspondence## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

## References

- [1]A. Strominger and C. Vafa,
*Microscopic origin of the Bekenstein-Hawking entropy*,*Phys. Lett.***B 379**(1996) 99 [hep-th/9601029] [INSPIRE]. - [2]C.G. Callan and J.M. Maldacena,
*D-brane approach to black hole quantum mechanics*,*Nucl. Phys.***B 472**(1996) 591 [hep-th/9602043] [INSPIRE]. - [3]S.R. Das and S.D. Mathur,
*Comparing decay rates for black holes and D-branes*,*Nucl. Phys.***B 478**(1996) 561 [hep-th/9606185] [INSPIRE]. - [4]J.M. Maldacena and A. Strominger,
*Black hole grey body factors and D-brane spectroscopy*,*Phys. Rev.***D 55**(1997) 861 [hep-th/9609026] [INSPIRE]. - [5]
- [6]R. Dijkgraaf,
*Instanton strings and hyperKähler geometry*,*Nucl. Phys.***B 543**(1999) 545 [hep-th/9810210] [INSPIRE]. - [7]N. Seiberg and E. Witten,
*The D*1*/D*5*system and singular CFT*,*JHEP***04**(1999) 017 [hep-th/9903224] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [8]F. Larsen and E.J. Martinec, U(1)
*charges and moduli in the D1-D5 system*,*JHEP***06**(1999) 019 [hep-th/9905064] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [9]G.E. Arutyunov and S.A. Frolov,
*Virasoro amplitude from the S*^{N}*R*^{24}*orbifold σ-model*,*Theor. Math. Phys.***114**(1998) 43 [hep-th/9708129] [INSPIRE].CrossRefGoogle Scholar - [10]G.E. Arutyunov and S.A. Frolov,
*Four graviton scattering amplitude from S*^{N}*R*^{8}*supersymmetric orbifold σ-model*,*Nucl. Phys.***B 524**(1998) 159 [hep-th/9712061] [INSPIRE]. - [11]A. Jevicki, M. Mihailescu and S. Ramgoolam,
*Gravity from CFT on S*^{N}(*X*)*: Symmetries and interactions*,*Nucl. Phys.***B 577**(2000) 47 [hep-th/9907144] [INSPIRE]. - [12]J.R. David, G. Mandal and S.R. Wadia,
*Microscopic formulation of black holes in string theory*,*Phys. Rept.***369**(2002) 549 [hep-th/0203048] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [13]J.M. Maldacena, G.W. Moore and A. Strominger,
*Counting BPS black holes in toroidal Type II string theory*, hep-th/9903163 [INSPIRE]. - [14]O. Lunin and S.D. Mathur,
*AdS/CFT duality and the black hole information paradox*,*Nucl. Phys.***B 623**(2002) 342 [hep-th/0109154] [INSPIRE]. - [15]S.D. Mathur,
*The Fuzzball proposal for black holes: An Elementary review*,*Fortsch. Phys.***53**(2005) 793 [hep-th/0502050] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [16]I. Kanitscheider, K. Skenderis and M. Taylor,
*Fuzzballs with internal excitations*,*JHEP***06**(2007) 056 [arXiv:0704.0690] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [17]I. Bena and N.P. Warner,
*Black holes, black rings and their microstates*,*Lect. Notes Phys.***755**(2008) 1 [hep-th/0701216] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [18]B.D. Chowdhury and A. Virmani,
*Modave Lectures on Fuzzballs and Emission from the D1-D5 System*, in*5th Modave Summer School in Mathematical Physics*, Modave, Belgium, 17–21 August 2009 (2010) [arXiv:1001.1444] [INSPIRE]. - [19]M.R. Gaberdiel, C. Peng and I.G. Zadeh,
*Higgsing the stringy higher spin symmetry*,*JHEP***10**(2015) 101 [arXiv:1506.02045] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [20]C.A. Keller and I.G. Zadeh,
*Lifting*^{1}*-BPS States on K*3*and Mathieu Moonshine*, arXiv:1905.00035 [INSPIRE]. - [21]S. Hampton, S.D. Mathur and I.G. Zadeh,
*Lifting of D1-D5-P states*,*JHEP***01**(2019) 075 [arXiv:1804.10097] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [22]O. Lunin and S.D. Mathur,
*Correlation functions for M*^{N}*/S*_{N}*orbifolds*,*Commun. Math. Phys.***219**(2001) 399 [hep-th/0006196] [INSPIRE].ADSCrossRefGoogle Scholar - [23]O. Lunin and S.D. Mathur,
*Three point functions for M*^{N}*/S*_{N}*orbifolds with N*= 4*supersymmetry*,*Commun. Math. Phys.***227**(2002) 385 [hep-th/0103169] [INSPIRE].ADSCrossRefGoogle Scholar - [24]E. Gava and K.S. Narain,
*Proving the PP-wave/CFT*2*duality*,*JHEP***12**(2002) 023 [hep-th/0208081] [INSPIRE].ADSCrossRefGoogle Scholar - [25]A. Pakman, L. Rastelli and S.S. Razamat,
*Diagrams for Symmetric Product Orbifolds*,*JHEP***10**(2009) 034 [arXiv:0905.3448] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [26]A. Pakman, L. Rastelli and S.S. Razamat,
*Extremal Correlators and Hurwitz Numbers in Symmetric Product Orbifolds*,*Phys. Rev.***D 80**(2009) 086009 [arXiv:0905.3451] [INSPIRE]. - [27]A. Pakman, L. Rastelli and S.S. Razamat,
*A Spin Chain for the Symmetric Product CFT(2)*,*JHEP***05**(2010) 099 [arXiv:0912.0959] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [28]S.G. Avery, B.D. Chowdhury and S.D. Mathur,
*Deforming the D1D5 CFT away from the orbifold point*,*JHEP***06**(2010) 031 [arXiv:1002.3132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [29]S.G. Avery, B.D. Chowdhury and S.D. Mathur,
*Excitations in the deformed D1D5 CFT*,*JHEP***06**(2010) 032 [arXiv:1003.2746] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [30]B.A. Burrington, A.W. Peet and I.G. Zadeh,
*Operator mixing for string states in the D1-D5 CFT near the orbifold point*,*Phys. Rev.***D 87**(2013) 106001 [arXiv:1211.6699] [INSPIRE]. - [31]B.A. Burrington, A.W. Peet and I.G. Zadeh,
*Twist-nontwist correlators in M*^{N}*/S*_{N}*orbifold CFTs*,*Phys. Rev.***D 87**(2013) 106008 [arXiv:1211.6689] [INSPIRE]. - [32]B.A. Burrington, S.D. Mathur, A.W. Peet and I.G. Zadeh,
*Analyzing the squeezed state generated by a twist deformation*,*Phys. Rev.***D 91**(2015) 124072 [arXiv:1410.5790] [INSPIRE]. - [33]B.A. Burrington, I.T. Jardine and A.W. Peet,
*Operator mixing in deformed D1D5 CFT and the OPE on the cover*,*JHEP***06**(2017) 149 [arXiv:1703.04744] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [34]Z. Carson, S. Hampton and S.D. Mathur,
*Full action of two deformation operators in the D1D5 CFT*,*JHEP***11**(2017) 096 [arXiv:1612.03886] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [35]Z. Carson, S. Hampton and S.D. Mathur,
*One-Loop Transition Amplitudes in the D1D5 CFT*,*JHEP***01**(2017) 006 [arXiv:1606.06212] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [36]Z. Carson, S. Hampton and S.D. Mathur,
*Second order effect of twist deformations in the D1D5 CFT*,*JHEP***04**(2016) 115 [arXiv:1511.04046] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [37]Z. Carson, S. Hampton, S.D. Mathur and D. Turton,
*Effect of the deformation operator in the D1D5 CFT*,*JHEP***01**(2015) 071 [arXiv:1410.4543] [INSPIRE].ADSCrossRefGoogle Scholar - [38]Z. Carson, S.D. Mathur and D. Turton,
*Bogoliubov coefficients for the twist operator in the D1D5 CFT*,*Nucl. Phys.***B 889**(2014) 443 [arXiv:1406.6977] [INSPIRE]. - [39]Z. Carson, S. Hampton, S.D. Mathur and D. Turton,
*Effect of the twist operator in the D1D5 CFT*,*JHEP***08**(2014) 064 [arXiv:1405.0259] [INSPIRE].ADSCrossRefGoogle Scholar - [40]L.P. Kadanoff,
*Multicritical behavior at the kosterlitz-thouless critical point Annals Phys.***120**(1979) 39.ADSCrossRefGoogle Scholar - [41]R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde,
*On Moduli Spaces Of Conformal Field Theories With C ≥*1, in*Copenhagen 1987, Proceedings, Perspectives In String Theory*, pp. 117–137 [INSPIRE]. - [42]J.L. Cardy,
*Continuously Varying Exponents and the Value of the Central Charge*,*J. Phys.***A 20**(1987) L891 [INSPIRE]. - [43]H. Eberle,
*Twistfield perturbations of vertex operators in the Z(2) orbifold model*,*JHEP***06**(2002) 022 [hep-th/0103059] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [44]H. Eberle,
*Twistfield perturbations of vertex operators in the Z(2) orbifold model*, Ph.D. Thesis, University of Bonn, Bonn (2006).Google Scholar - [45]M.R. Gaberdiel, A. Konechny and C. Schmidt-Colinet,
*Conformal perturbation theory beyond the leading order*,*J. Phys.***A 42**(2009) 105402 [arXiv:0811.3149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [46]D. Berenstein and A. Miller,
*Conformal perturbation theory, dimensional regularization and AdS/CFT correspondence*,*Phys. Rev.***D 90**(2014) 086011 [arXiv:1406.4142] [INSPIRE]. - [47]D. Berenstein and A. Miller,
*Logarithmic enhancements in conformal perturbation theory and their real time interpretation*, arXiv:1607.01922 [INSPIRE]. - [48]J. de Boer, J. Manschot, K. Papadodimas and E. Verlinde,
*The Chiral ring of AdS*_{3}*/C F T*2*and the attractor mechanism*,*JHEP***03**(2009) 030 [arXiv:0809.0507] [INSPIRE].CrossRefGoogle Scholar - [49]A. Sen,
*On the Background Independence of String Field Theory*,*Nucl. Phys.***B 345**(1990) 551 [INSPIRE]. - [50]A. Sen,
*Background Independence of Closed Superstring Field Theory*,*JHEP***02**(2018) 155 [arXiv:1711.08468] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [51]M. Campbell, P.C. Nelson and E. Wong,
*Stress tensor perturbations in conformal field theory*,*Int. J. Mod. Phys.***A 6**(1991) 4909 [INSPIRE]. - [52]M. Evans and B.A. Ovrut,
*Deformations of Conformal Field Theories and Symmetries of the String*,*Phys. Rev.***D 41**(1990) 3149 [INSPIRE].