Journal of High Energy Physics

, 2019:154 | Cite as

Kinematic focus point method for particle mass measurements in missing energy events

  • Doojin Kim
  • Konstantin T. Matchev
  • Prasanth ShyamsundarEmail author
Open Access
Regular Article - Theoretical Physics


We investigate the solvability of the event kinematics in missing energy events at hadron colliders, as a function of the particle mass ansatz. To be specific, we reconstruct the neutrino momenta in dilepton \( t\overline{t} \)-like events, without assuming any prior knowledge of the mass spectrum. We identify a class of events, which we call extreme events, with the property that the kinematic boundary of their allowed region in mass parameter space passes through the true mass point. We develop techniques for recognizing extreme events in the data and demonstrate that they are abundant in a realistic data sample, due to expected singularities in phase space. We propose a new method for mass measurement whereby we obtain the true values of the mass parameters as the focus point of the kinematic boundaries for all events in the data sample. Since the masses are determined from a relatively sharp peak structure (the density of kinematic boundary curves), the method avoids some of the systematic errors associated with other techniques. We show that this new approach is complementary to previously considered methods in the literature where one studies the solvability of the kinematic constraints throughout the mass parameter space. In particular, we identify a problematic direction in mass space of nearly 100% solvability, and then show that the focus point method is effective in lifting the degeneracy.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys.48 (2010) 495 [arXiv:1003.0904] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D0 collaboration, Direct measurement of the top quark mass at D0, Phys. Rev.D 58 (1998) 052001 [hep-ex/9801025] [INSPIRE].
  3. [3]
    B. Gripaios, K. Sakurai and B. Webber, Polynomials, Riemann surfaces and reconstructing missing-energy events, JHEP09 (2011) 140 [arXiv:1103.3438] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    CMS collaboration, Measurement of the top quark mass with lepton+jets final states using pp collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 78 (2018) 891 [arXiv:1805.01428] [INSPIRE].
  5. [5]
    S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys.18 (1998) 1 [hep-ph/9709356] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  6. [6]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev.D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].ADSGoogle Scholar
  7. [7]
    T.G. Rizzo, Probes of universal extra dimensions at colliders, Phys. Rev.D 64 (2001) 095010 [hep-ph/0106336] [INSPIRE].ADSGoogle Scholar
  8. [8]
    H.-C. Cheng, K.T. Matchev and M. Schmaltz, Bosonic supersymmetry? Getting fooled at the CERN LHC, Phys. Rev.D 66 (2002) 056006 [hep-ph/0205314] [INSPIRE].ADSGoogle Scholar
  9. [9]
    N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The Littlest Higgs, JHEP07 (2002) 034 [hep-ph/0206021] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP08 (2004) 061 [hep-ph/0405243] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci.55 (2005) 229 [hep-ph/0502182] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys.58 (2007) 247 [hep-ph/0512128] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    CMS collaboration, Measurement of masses in the \( t\overline{t} \)system by kinematic endpoints in pp collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J.C 73 (2013) 2494 [arXiv:1304.5783] [INSPIRE].
  14. [14]
    A.J. Barr and C.G. Lester, A review of the mass measurement techniques proposed for the Large Hadron Collider, J. Phys.G 37 (2010) 123001 [arXiv:1004.2732] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M.M. Nojiri, G. Polesello and D.R. Tovey, Proposal for a new reconstruction technique for SUSY processes at the LHC, hep-ph/0312317 [INSPIRE].
  16. [16]
    K. Kawagoe, M.M. Nojiri and G. Polesello, A new SUSY mass reconstruction method at the CERN LHC, Phys. Rev.D 71 (2005) 035008 [hep-ph/0410160] [INSPIRE].ADSGoogle Scholar
  17. [17]
    H.-C. Cheng et al., Mass determination in SUSY-like events with missing energy, JHEP12 (2007) 076 [arXiv:0707.0030] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    H.-C. Cheng et al., Accurate mass determinations in decay chains with missing energy, Phys. Rev. Lett.100 (2008) 252001 [arXiv:0802.4290] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    H.-C. Cheng, J.F. Gunion, Z. Han and B. McElrath, Accurate mass determinations in decay chains with missing energy. II, Phys. Rev.D 80 (2009) 035020 [arXiv:0905.1344] [INSPIRE].ADSGoogle Scholar
  20. [20]
    B. Webber, Mass determination in sequential particle decay chains, JHEP09 (2009) 124 [arXiv:0907.5307] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M.M. Nojiri, G. Polesello and D.R. Tovey, A hybrid method for determining SUSY particle masses at the LHC with fully identified cascade decays, JHEP05 (2008) 014 [arXiv:0712.2718] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R.M. Djilkibaev and R.V. Konoplich, A new approach for reconstructing SUSY particle masses with a few fb 1at the LHC, JHEP08 (2008) 036 [arXiv:0806.2836] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D. Casadei, R. Konoplich and R. Djilkibaev, Reconstruction of stop quark mass at the LHC, Phys. Rev.D 82 (2010) 075011 [arXiv:1006.5875] [INSPIRE].ADSGoogle Scholar
  24. [24]
    N. Kersting, A simple mass reconstruction technique for SUSY particles at the LHC, Phys. Rev.D 79 (2009) 095018 [arXiv:0901.2765] [INSPIRE].ADSGoogle Scholar
  25. [25]
    Z. Kang et al., Neutralino reconstruction at the LHC from decay-frame kinematics, Eur. Phys. J.C 70 (2010) 271 [arXiv:0908.1550] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A.J. Barr et al., Guide to transverse projections and mass-constraining variables, Phys. Rev.D 84 (2011) 095031 [arXiv:1105.2977] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D. Kim, K.T. Matchev, F. Moortgat and L. Pape, Testing invisible momentum ansatze in missing energy events at the LHC, JHEP08 (2017) 102 [arXiv:1703.06887] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett.B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Barr, C. Lester and P. Stephens, m(T2): the truth behind the glamour, J. Phys.G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Burns, K. Kong, K.T. Matchev and M. Park, Using subsystem m(T2) for complete mass determinations in decay chains with missing energy at hadron colliders, JHEP03 (2009) 143 [arXiv:0810.5576] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A.J. Barr, B. Gripaios and C.G. Lester, Transverse masses and kinematic constraints: from the boundary to the crease, JHEP11 (2009) 096 [arXiv:0908.3779] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    P. Konar, K. Kong, K.T. Matchev and M. Park, Superpartner mass measurement technique using 1D orthogonal decompositions of the Cambridge transverse mass variable m T2 , Phys. Rev. Lett.105 (2010) 051802 [arXiv:0910.3679] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P. Konar, K. Kong, K.T. Matchev and M. Park, Dark matter particle spectroscopy at the LHC: generalizing m T2to asymmetric event topologies, JHEP04 (2010) 086 [arXiv:0911.4126] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  34. [34]
    P. Konar, K. Kong and K.T. Matchev, \( {\sqrt{\hat{s}}}_{\mathrm{min}} \): a global inclusive variable for determining the mass scale of new physics in events with missing energy at hadron colliders, JHEP03 (2009) 085 [arXiv:0812.1042] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    P. Konar, K. Kong, K.T. Matchev and M. Park, RECO level \( {\sqrt{s}}_{\mathrm{min}} \)and subsystem \( {\sqrt{s}}_{\mathrm{min}} \): Improved global inclusive variables for measuring the new physics mass scale in E Tevents at hadron colliders, JHEP06 (2011) 041 [arXiv:1006.0653] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A.K. Swain and P. Konar, Constrained \( {\sqrt{\hat{s}}}_{\mathrm{min}} \)and reconstructing with semi-invisible production at hadron colliders, JHEP03 (2015) 142 [arXiv:1412.6624] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    A.J. Barr, B. Gripaios and C.G. Lester, Measuring the Higgs boson mass in dileptonic W -boson decays at hadron colliders, JHEP07 (2009) 072 [arXiv:0902.4864] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Gross and O. Vitells, Transverse mass observables for charged Higgs boson searches at hadron colliders, Phys. Rev.D 81 (2010) 055010 [arXiv:0907.5367] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A.J. Barr, S.T. French, J.A. Frost and C.G. Lester, Speedy Higgs boson discovery in decays to tau lepton pairs: h → ττ , JHEP10 (2011) 080 [arXiv:1106.2322] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A.J. Barr, B. Gripaios and C.G. Lester, Re-weighing the evidence for a Higgs boson in dileptonic W-boson decays, Phys. Rev. Lett.108 (2012) 041803 [Erratum ibid.108 (2012) 109902] [arXiv:1108.3468] [INSPIRE].
  41. [41]
    W.S. Cho, J.E. Kim and J.-H. Kim, Amplification of endpoint structure for new particle mass measurement at the LHC, Phys. Rev.D 81 (2010) 095010 [arXiv:0912.2354] [INSPIRE].ADSGoogle Scholar
  42. [42]
    W.S. Cho, W. Klemm and M.M. Nojiri, Mass measurement in boosted decay systems at hadron colliders, Phys. Rev.D 84 (2011) 035018 [arXiv:1008.0391] [INSPIRE].ADSGoogle Scholar
  43. [43]
    G.G. Ross and M. Serna, Mass determination of new states at hadron colliders, Phys. Lett.B 665 (2008) 212 [arXiv:0712.0943] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A.J. Barr, G.G. Ross and M. Serna, The precision determination of invisible-particle masses at the LHC, Phys. Rev.D 78 (2008) 056006 [arXiv:0806.3224] [INSPIRE].ADSGoogle Scholar
  45. [45]
    W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, m T2-assisted on-shell reconstruction of missing momenta and its application to spin measurement at the LHC, Phys. Rev.D 79 (2009) 031701 [arXiv:0810.4853] [INSPIRE].ADSGoogle Scholar
  46. [46]
    K. Choi, S. Choi, J.S. Lee and C.B. Park, Reconstructing the Higgs boson in dileptonic W decays at hadron collider, Phys. Rev.D 80 (2009) 073010 [arXiv:0908.0079] [INSPIRE].ADSGoogle Scholar
  47. [47]
    C.B. Park, Reconstructing the heavy resonance at hadron colliders, Phys. Rev.D 84 (2011) 096001 [arXiv:1106.6087] [INSPIRE].ADSGoogle Scholar
  48. [48]
    D. Guadagnoli and C.B. Park, m T2-reconstructed invisible momenta as spin analizers and an application to top polarization, JHEP01 (2014) 030 [arXiv:1308.2226] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    R. Mahbubani, K.T. Matchev and M. Park, Re-interpreting the Oxbridge stransverse mass variable MT2 in general cases, JHEP03 (2013) 134 [arXiv:1212.1720] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    W.S. Cho et al., On-shell constrained M 2variables with applications to mass measurements and topology disambiguation, JHEP08 (2014) 070 [arXiv:1401.1449] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    W.S. Cho et al., Improving the sensitivity of stop searches with on-shell constrained invariant mass variables, JHEP05 (2015) 040 [arXiv:1411.0664] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    D. Kim, H.-S. Lee and M. Park, Invisible dark gauge boson search in top decays using a kinematic method, JHEP03 (2015) 134 [arXiv:1411.0668] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    W.S. Cho et al., OPTIMASS: a package for the minimization of kinematic mass functions with constraints, JHEP01 (2016) 026 [arXiv:1508.00589] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    P. Konar and A.K. Swain, Mass reconstruction with M 2under constraint in semi-invisible production at a hadron collider, Phys. Rev.D 93 (2016) 015021 [arXiv:1509.00298] [INSPIRE].ADSGoogle Scholar
  55. [55]
    P. Konar and A.K. Swain, Reconstructing semi-invisible events in resonant τ pair production from Higgs, Phys. Lett.B 757 (2016) 211 [arXiv:1602.00552] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    D. Gonçalves, K. Kong and J.H. Kim, Probing the top-Higgs Yukawa CP structure in dileptonic \( t\overline{t}h \)with M 2-assisted reconstruction, JHEP06 (2018) 079 [arXiv:1804.05874] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    I. Hinchliffe et al., Precision SUSY measurements at CERN LHC, Phys. Rev.D 55 (1997) 5520 [hep-ph/9610544] [INSPIRE].ADSGoogle Scholar
  58. [58]
    H. Bachacou, I. Hinchliffe and F.E. Paige, Measurements of masses in SUGRA models at CERN LHC, Phys. Rev.D 62 (2000) 015009 [hep-ph/9907518] [INSPIRE].ADSGoogle Scholar
  59. [59]
    B.C. Allanach, C.G. Lester, M.A. Parker and B.R. Webber, Measuring sparticle masses in nonuniversal string inspired models at the LHC, JHEP09 (2000) 004 [hep-ph/0007009] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    B.K. Gjelsten, D.J. Miller and P. Osland, Measurement of SUSY masses via cascade decays for SPS 1a, JHEP12 (2004) 003 [hep-ph/0410303] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    B.K. Gjelsten, D.J. Miller and P. Osland, Measurement of the gluino mass via cascade decays for SPS 1a, JHEP06 (2005) 015 [hep-ph/0501033] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    K.T. Matchev, F. Moortgat, L. Pape and M. Park, Precise reconstruction of sparticle masses without ambiguities, JHEP08 (2009) 104 [arXiv:0906.2417] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    K.T. Matchev, F. Moortgat and L. Pape, Dreaming awake: disentangling the underlying physics in case of a SUSY-like discovery at the LHC, J. Phys.G 46 (2019) 115002 [arXiv:1902.11267] [INSPIRE].CrossRefGoogle Scholar
  64. [64]
    K. Agashe, D. Kim, D.G.E. Walker and L. Zhu, Using m T2to distinguish dark matter stabilization symmetries, Phys. Rev.D 84 (2011) 055020 [arXiv:1012.4460] [INSPIRE].ADSGoogle Scholar
  65. [65]
    D. Curtin, Mixing it up with m T2: unbiased mass measurements at hadron colliders, Phys. Rev.D 85 (2012) 075004 [arXiv:1112.1095] [INSPIRE].ADSGoogle Scholar
  66. [66]
    H.-C. Cheng and Z. Han, Minimal kinematic constraints and m T2 , JHEP12 (2008) 063 [arXiv:0810.5178] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G. Anagnostou, Model independent search in 2-dimensional mass space, EPJ Web Conf.71 (2014) 00006 [arXiv:1112.3379] [INSPIRE].CrossRefGoogle Scholar
  68. [68]
    I.-W. Kim, Algebraic singularity method for mass measurement with missing energy, Phys. Rev. Lett.104 (2010) 081601 [arXiv:0910.1149] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J.L. Feng and T. Moroi, Supernatural supersymmetry: phenomenological implications of anomaly mediated supersymmetry breaking, Phys. Rev.D 61 (2000) 095004 [hep-ph/9907319] [INSPIRE].ADSGoogle Scholar
  70. [70]
    J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev.D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].ADSGoogle Scholar
  71. [71]
    C.G. Lester, Mass and spin measurement techniques (for the Large Hadron Collider), lectures given at Theoretical Advanced Study Institute in Elementary Particle Physics: The Dark Secrets of the Terascale (TASI 2011), June 6–July 1, Boulder, U.S.A. (2011).Google Scholar
  72. [72]
    P. Agrawal, C. Kilic, C. White and J.-H. Yu, Improved mass measurement using the boundary of many-body phase space, Phys. Rev.D 89 (2014) 015021 [arXiv:1308.6560] [INSPIRE].ADSGoogle Scholar
  73. [73]
    D. Debnath et al., Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events, JHEP06 (2017) 092 [arXiv:1611.04487] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    B. Altunkaynak, C. Kilic and M.D. Klimek, Multidimensional phase space methods for mass measurements and decay topology determination, Eur. Phys. J.C 77 (2017) 61 [arXiv:1611.09764] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    D. Debnath et al., Enhancing the discovery prospects for SUSY-like decays with a forgotten kinematic variable, JHEP05 (2019) 008 [arXiv:1809.04517] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    P. Baringer, K. Kong, M. McCaskey and D. Noonan, Revisiting combinatorial ambiguities at hadron colliders with m T2 , JHEP10 (2011) 101 [arXiv:1109.1563] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    K. Choi, D. Guadagnoli and C.B. Park, Reducing combinatorial uncertainties: a new technique based on m T2variables, JHEP11 (2011) 117 [arXiv:1109.2201] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    D. Debnath et al., Resolving combinatorial ambiguities in dilepton \( t\overline{t} \)event topologies with constrained M 2variables, Phys. Rev.D 96 (2017) 076005 [arXiv:1706.04995] [INSPIRE].ADSGoogle Scholar
  79. [79]
    Y. Grossman, M. Martone and D.J. Robinson, Kinematic edges with flavor oscillation and non-zero widths, JHEP10 (2011) 127 [arXiv:1108.5381] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  80. [80]
    D. Kim and K.T. Matchev, How to prove that a E Texcess at the LHC is not due to dark matter, Phys. Rev.D 98 (2018) 055018 [arXiv:1712.07620] [INSPIRE].ADSGoogle Scholar
  81. [81]
    J. Alwall et al., MadGraph 5: going beyond, JHEP06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  82. [82]
    L. Sonnenschein, Algebraic approach to solve \( t\overline{t} \)dilepton equations, Phys. Rev.D 72 (2005) 095020 [hep-ph/0510100] [INSPIRE].ADSGoogle Scholar
  83. [83]
    L. Sonnenschein, Analytical solution of \( t\overline{t} \)dilepton equations, Phys. Rev.D 73 (2006) 054015 [Erratum ibid.D 78 (2008) 079902] [hep-ph/0603011] [INSPIRE].
  84. [84]
    B.A. Betchart, R. Demina and A. Harel, Analytic solutions for neutrino momenta in decay of top quarks, Nucl. Instrum. Meth.A 736 (2014) 169 [arXiv:1305.1878] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Gluino stransverse mass, Phys. Rev. Lett.100 (2008) 171801 [arXiv:0709.0288] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    A.J. Barr, B. Gripaios and C.G. Lester, Weighing Wimps with kinks at colliders: invisible particle mass measurements from endpoints, JHEP02 (2008) 014 [arXiv:0711.4008] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Measuring superparticle masses at hadron collider using the transverse mass kink, JHEP02 (2008) 035 [arXiv:0711.4526] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    K.T. Matchev, F. Moortgat, L. Pape and M. Park, Precision sparticle spectroscopy in the inclusive same-sign dilepton channel at LHC, Phys. Rev.D 82 (2010) 077701 [arXiv:0909.4300] [INSPIRE].ADSGoogle Scholar
  89. [89]
    K.T. Matchev and M. Park, A general method for determining the masses of semi-invisibly decaying particles at hadron colliders, Phys. Rev. Lett.107 (2011) 061801 [arXiv:0910.1584] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    B. Gripaios, Transverse observables and mass determination at hadron colliders, JHEP02 (2008) 053 [arXiv:0709.2740] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    A. Betancur et al., Measuring the mass, width and couplings of semi-invisible resonances with the matrix element method, Phys. Rev.D 99 (2019) 116007 [arXiv:1708.07641] [INSPIRE].ADSGoogle Scholar
  92. [92]
    CMS collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV, 2017 JINST12 P02014 [arXiv:1607.03663] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ArizonaTucsonU.S.A.
  2. 2.Institute for Fundamental Theory, Physics DepartmentUniversity of FloridaGainesvilleU.S.A.

Personalised recommendations