Journal of High Energy Physics

, 2019:151 | Cite as

Self-similar solutions and critical behavior in Einstein-Maxwell-dilaton theory sourced by charged null fluids

  • Pedro Aniceto
  • Jorge V. RochaEmail author
Open Access
Regular Article - Theoretical Physics


We investigate continuously self-similar solutions of four-dimensional Einstein-Maxwell-dilaton theory supported by charged null fluids. We work under the assumption of spherical symmetry and the dilaton coupling parameter a is allowed to be arbitrary. First, it is proved that the only such vacuum solutions with a time-independent asymptotic value of the dilaton necessarily have vanishing electric field, and thus reduce to Roberts’ solution of the Einstein-dilaton system. Allowing for additional sources, we then obtain Vaidya-like families of self-similar solutions supported by charged null fluids. By continuously matching these solutions to flat spacetime along a null hypersurface one can study gravitational collapse analytically. Capitalizing on this idea, we compute the critical exponent defining the power-law behavior of the mass contained within the apparent horizon near the threshold of black hole formation. For the heterotic dilaton coupling a = 1 the critical exponent takes the value 1/2 typically observed in similar analytic studies, but more generally it is given by γ = a2(1 + a2)1. The analysis is complemented by an assessment of the classical energy conditions. Finally, and on a different note, we report on a novel dyonic black hole spacetime, which is a time-dependent vacuum solution of this theory. In this case, the presence of constant electric and magnetic charges naturally breaks self-similarity.


Black Holes Spacetime Singularities Black Holes in String Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    J.R. Oppenheimer and H. Snyder, On Continued gravitational contraction, Phys. Rev.56 (1939) 455 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    S. Hawking, Gravitationally collapsed objects of very low mass, Mon. Not. Roy. Astron. Soc.152 (1971) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. Christodoulou, The Problem of a Self-gravitating Scalar Field, Commun. Math. Phys.105 (1986) 337 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    D. Christodoulou, A Mathematical Theory of Gravitational Collapse, Commun. Math. Phys.109 (1987) 613 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    M.W. Choptuik, Universality and scaling in gravitational collapse of a massless scalar field, Phys. Rev. Lett.70 (1993) 9 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    C. Gundlach and J.M. Martín-García, Critical phenomena in gravitational collapse, Living Rev. Rel.10 (2007) 5 [arXiv:0711.4620] [INSPIRE].
  7. [7]
    J.C. Niemeyer and K. Jedamzik, Dynamics of primordial black hole formation, Phys. Rev.D 59 (1999) 124013 [astro-ph/9901292] [INSPIRE].
  8. [8]
    P.M. Chesler and B. Way, Holographic Signatures of Critical Collapse, Phys. Rev. Lett.122 (2019) 231101 [arXiv:1902.07218] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.V. Rocha and M. Tomašević, Self-similarity in Einstein-Maxwell-dilaton theories and critical collapse, Phys. Rev.D 98 (2018) 104063 [arXiv:1810.04907] [INSPIRE].
  10. [10]
    P.R. Brady, Analytic example of critical behaviour in scalar field collapse, Class. Quant. Grav.11 (1994) 1255 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    M.D. Roberts, Scalar Field Counterexamples to the Cosmic Censorship Hypothesis, Gen. Rel. Grav.21 (1989) 907 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    R. Güven and E. Yörük, Stringy Robinson-Trautman solutions, Phys. Rev.D 54 (1996) 6413 [hep-th/9609078] [INSPIRE].
  13. [13]
    P. Aniceto and J.V. Rocha, Dynamical black holes in low-energy string theory, JHEP05 (2017) 035 [arXiv:1703.07414] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    G.W. Gibbons and K.-i. Maeda, Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields, Nucl. Phys.B 298 (1988) 741 [INSPIRE].
  15. [15]
    D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev.D 43 (1991) 3140 [Erratum ibid.D 45 (1992) 3888] [INSPIRE].
  16. [16]
    P. Vaidya, The Gravitational Field of a Radiating Star, Proc. Natl. Inst. Sci. IndiaA 33 (1951) 264 [INSPIRE].
  17. [17]
    P. Aniceto, P. Pani and J.V. Rocha, Radiating black holes in Einstein-Maxwell-dilaton theory and cosmic censorship violation, JHEP05 (2016) 115 [arXiv:1512.08550] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A. Strominger and L. Thorlacius, Universality and scaling at the onset of quantum black hole formation, Phys. Rev. Lett.72 (1994) 1584 [hep-th/9312017] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Y. Peleg and A.R. Steif, Phase transition for gravitationally collapsing dust shells in (2 + 1)-dimensions, Phys. Rev.D 51 (1995) 3992 [gr-qc/9412023] [INSPIRE].
  20. [20]
    X. Zhang and H. Lü, Critical Behavior in a Massless Scalar Field Collapse with Self-interaction Potential, Phys. Rev.D 91 (2015) 044046 [arXiv:1410.8337] [INSPIRE].
  21. [21]
    X. Wang, X. Wu and S. Gao, Critical phenomena in gravitational collapse of Husain-Martinez-Núñez scalar field, arXiv:1904.12411 [INSPIRE].
  22. [22]
    H.P. de Oliveira and E.S. Cheb-Terrab, Self-similar collapse of conformally coupled scalar fields, Class. Quant. Grav.13 (1996) 425 [gr-qc/9512010] [INSPIRE].
  23. [23]
    T. Chiba and J. Soda, Critical behavior in the Brans-Dicke theory of gravitation, Prog. Theor. Phys.96 (1996) 567 [gr-qc/9603056] [INSPIRE].
  24. [24]
    S.S. Yazadjiev, Self-similar collapse of a scalar field in dilaton gravity and critical behavior, Int. J. Mod. Phys.A 19 (2004) 2495 [gr-qc/0302077] [INSPIRE].
  25. [25]
    P. Bizoń and A. Rostworowski, On weakly turbulent instability of anti-de Sitter space, Phys. Rev. Lett.107 (2011) 031102 [arXiv:1104.3702] [INSPIRE].
  26. [26]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, JHEP08 (2010) 078 [arXiv:0911.3586] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    B.J. Carr and A.A. Coley, Self-similarity in general relativity, Class. Quant. Grav.16 (1999) R31 [gr-qc/9806048] [INSPIRE].
  28. [28]
    K. Martel and E. Poisson, Regular coordinate systems for Schwarzschild and other spherical space-times, Am. J. Phys.69 (2001) 476 [gr-qc/0001069] [INSPIRE].
  29. [29]
    C. Gundlach, Critical phenomena in gravitational collapse, Living Rev. Rel.2 (1999) 4 [gr-qc/0001046] [INSPIRE].
  30. [30]
    V. Husain, Exact solutions for null fluid collapse, Phys. Rev.D 53 (1996) 1759 [gr-qc/9511011] [INSPIRE].
  31. [31]
    B. Creelman and I. Booth, Collapse and bounce of null fluids, Phys. Rev.D 95 (2017) 124033 [arXiv:1610.08793] [INSPIRE].
  32. [32]
    S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge U.K. (1973).CrossRefGoogle Scholar
  33. [33]
    K.V. Kuchař and C.G. Torre, Gaussian reference fluid and interpretation of quantum geometrodynamics, Phys. Rev.D 43 (1991) 419 [INSPIRE].
  34. [34]
    G.J.O. Jameson, Counting Zeros of Generalised Polynomials: Descartes’ Rule of Signs and Laguerre’s Extensions, Math. Gazette.90 (2006) 518.ADSGoogle Scholar
  35. [35]
    R. Kallosh, A.D. Linde, T. Ortín, A.W. Peet and A. Van Proeyen, Supersymmetry as a cosmic censor, Phys. Rev.D 46 (1992) 5278 [hep-th/9205027] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    C. Gundlach, Understanding critical collapse of a scalar field, Phys. Rev.D 55 (1997) 695 [gr-qc/9604019] [INSPIRE].
  37. [37]
    A. Ori, Charged null fluid and the weak energy condition, Class. Quant. Grav.8 (1991) 1559.ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    S. Chatterjee, S. Ganguli and A. Virmani, Charged Vaidya Solution Satisfies Weak Energy Condition, Gen. Rel. Grav.48 (2016) 91 [arXiv:1512.02422] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    J.V. Rocha and R. Santarelli, Scanning the parameter space of collapsing rotating thin shells, Class. Quant. Grav.35 (2018) 125009 [arXiv:1711.07572] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  2. 2.Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB)Universitat de BarcelonaBarcelonaSpain

Personalised recommendations