Advertisement

Journal of High Energy Physics

, 2019:145 | Cite as

\( \mathcal{N} \) = (8, 0) AdS vacua of three-dimensional supergravity

  • Nihat Sadik DegerEmail author
  • Camille Eloy
  • Henning Samtleben
Open Access
Regular Article - Theoretical Physics
  • 34 Downloads

Abstract

We give a classification of fully supersymmetric chiral \( \mathcal{N} \) = (8, 0) AdS3 vacua in general three-dimensional half-maximal gauged supergravities coupled to matter. These theories exhibit a wealth of supersymmetric vacua with background isometries given by the supergroups OSp(8|2, ℝ), F(4), SU(4|1, 1), and OSp(4|4), respectively. We identify the associated embedding tensors and the structure of the associated gauge groups. We furthermore compute the mass spectra around these vacua. As an off-spin we include results for a number of \( \mathcal{N} \) = (7, 0) vacua with supergroups OSp(7|2, ℝ) and G(3), respectively. We also comment on their possible higher-dimensional uplifts.

Keywords

AdS-CFT Correspondence Extended Supersymmetry Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  3. [3]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett.86 (2001) 1686 [hep-th/0010076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys.B 655 (2003) 93 [hep-th/0212239] [INSPIRE].
  6. [6]
    J. Schön and M. Weidner, Gauged N = 4 supergravities, JHEP05 (2006) 034 [hep-th/0602024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Louis and H. Triendl, Maximally supersymmetric AdS 4vacua in N = 4 supergravity, JHEP10 (2014) 007 [arXiv:1406.3363] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J. Louis and S. Lüst, Supersymmetric AdS 7backgrounds in half-maximal supergravity and marginal operators of (1, 0) SCFTs, JHEP10 (2015) 120 [arXiv:1506.08040] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Louis, H. Triendl and M. Zagermann, N = 4 supersymmetric AdS 5vacua and their moduli spaces, JHEP10 (2015) 083 [arXiv:1507.01623] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P. Karndumri and J. Louis, Supersymmetric AdS 6vacua in six-dimensional N = (1, 1) gauged supergravity, JHEP01 (2017) 069 [arXiv:1612.00301] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Lüst, P. Ruter and J. Louis, Maximally supersymmetric AdS solutions and their moduli spaces, JHEP03 (2018) 019 [arXiv:1711.06180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    T. Fischbacher, H. Nicolai and H. Samtleben, Vacua of maximal gauged D = 3 supergravities, Class. Quant. Grav.19 (2002) 5297 [hep-th/0207206] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged maximally extended supergravity in seven-dimensions, Phys. Lett.B 143 (1984) 103 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    M. Günaydin, L.J. Romans and N.P. Warner, Compact and noncompact gauged supergravity theories in five-dimensions, Nucl. Phys.B 272 (1986) 598 [INSPIRE].
  15. [15]
    B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys.B 208 (1982) 323 [INSPIRE]. [16] G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett.109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].
  16. [16]
    A. Chatrabhuti and P. Karndumri, Vacua and RG flows in N = 9 three dimensional gauged supergravity, JHEP10 (2010) 098 [arXiv:1007.5438] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Chatrabhuti and P. Karndumri, Vacua of N = 10 three dimensional gauged supergravity, Class. Quant. Grav.28 (2011) 125027 [arXiv:1011.5355] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett.B 180 (1986) 89 [INSPIRE].
  19. [19]
    H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in three-dimensions, JHEP04 (2001) 022 [hep-th/0103032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    B. de Wit, I. Herger and H. Samtleben, Gauged locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys.B 671 (2003) 175 [hep-th/0307006] [INSPIRE].
  21. [21]
    W. Nahm, Supersymmetries and their representations, Nucl. Phys.B 135 (1978) 149 [INSPIRE].
  22. [22]
    M. Günaydin, G. Sierra and P.K. Townsend, The unitary supermultiplets of d = 3 anti-de Sitter and d = 2 conformal superalgebras, Nucl. Phys.B 274 (1986) 429 [INSPIRE].
  23. [23]
    G. Dibitetto, G. Lo Monaco, A. Passias, N. Petri and A. Tomasiello, AdS 3solutions with exceptional supersymmetry, Fortsch. Phys.66 (2018) 1800060 [arXiv:1807.06602] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    B. de Wit, A.K. Tollsten and H. Nicolai, Locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys.B 392 (1993) 3 [hep-th/9208074] [INSPIRE].
  25. [25]
    H. Nicolai and H. Samtleben, N = 8 matter coupled AdS 3supergravities, Phys. Lett.B 514 (2001) 165 [hep-th/0106153] [INSPIRE].
  26. [26]
    N. Marcus and J.H. Schwarz, Three-dimensional supergravity theories, Nucl. Phys.B 228 (1983) 145 [INSPIRE].
  27. [27]
    G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux compactifications, JHEP03 (2011) 137 [arXiv:1102.0239] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    G. Dall’Agata and G. Inverso, On the vacua of N = 8 gauged supergravity in 4 dimensions, Nucl. Phys.B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].
  29. [29]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.B 556 (1999) 89 [hep-th/9905104] [INSPIRE].
  30. [30]
    M. Henningson and K. Sfetsos, Spinors and the AdS/CFT correspondence, Phys. Lett.B 431 (1998) 63 [hep-th/9803251] [INSPIRE].
  31. [31]
    W. Mück and K.S. Viswanathan, Conformal field theory correlators from classical scalar field theory on AdS d+1 , Phys. Rev.D 58 (1998) 041901 [hep-th/9804035] [INSPIRE].
  32. [32]
    W. Mück and K.S. Viswanathan, Conformal field theory correlators from classical field theory on anti-de Sitter space. 2. Vector and spinor fields, Phys. Rev.D 58 (1998) 106006 [hep-th/9805145] [INSPIRE].
  33. [33]
    W.S. l’Yi, Correlators of currents corresponding to the massive p form fields in AdS/CFT correspondence, Phys. Lett.B 448 (1999) 218 [hep-th/9811097] [INSPIRE].
  34. [34]
    A. Volovich, Rarita-Schwinger field in the AdS/CFT correspondence, JHEP09 (1998) 022 [hep-th/9809009] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    G. Dibitetto, A. Guarino and D. Roest, How to halve maximal supergravity, JHEP06 (2011) 030 [arXiv:1104.3587] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    H. Nicolai and H. Samtleben, Kaluza-Klein supergravity on AdS 3× S 3 , JHEP09 (2003) 036 [hep-th/0306202] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    U. Gran, J.B. Gutowski and G. Papadopoulos, On supersymmetric anti-de-Sitter, de-Sitter and Minkowski flux backgrounds, Class. Quant. Grav.35 (2018) 065016 [arXiv:1607.00191] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    S. Beck, U. Gran, J. Gutowski and G. Papadopoulos, All Killing superalgebras for warped AdS backgrounds, JHEP12 (2018) 047 [arXiv:1710.03713] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    A.S. Haupt, S. Lautz and G. Papadopoulos, A non-existence theorem for N > 16 supersymmetric AdS 3backgrounds, JHEP07 (2018) 178 [arXiv:1803.08428] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    O. Hohm, E.T. Musaev and H. Samtleben, O(d + 1, d + 1) enhanced double field theory, JHEP10 (2017) 086 [arXiv:1707.06693] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8) , Phys. Rev.D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].
  42. [42]
    E. Malek, Half-maximal supersymmetry from exceptional field theory, Fortsch. Phys.65 (2017) 1700061 [arXiv:1707.00714] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  43. [43]
    N. Kim, AdS 3solutions of IIB supergravity from D3-branes, JHEP01 (2006) 094 [hep-th/0511029] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J.P. Gauntlett, O.A.P. Mac Conamhna, T. Mateos and D. Waldram, Supersymmetric AdS 3solutions of type IIB supergravity, Phys. Rev. Lett.97 (2006) 171601 [hep-th/0606221] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Exact half-BPS flux solutions in M-theory. I: local solutions, JHEP08 (2008) 028 [arXiv:0806.0605] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    E. Ó Colgáin, J.-B. Wu and H. Yavartanoo, Supersymmetric AdS 3× S 2M-theory geometries with fluxes, JHEP08 (2010) 114 [arXiv:1005.4527] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    Y. Lozano, N.T. Macpherson, J. Montero and E. Ó. Colgáin, New AdS 3× S 2T-duals with N = (0, 4) supersymmetry, JHEP08 (2015) 121 [arXiv:1507.02659] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    C. Couzens, C. Lawrie, D. Martelli, S. Schäfer-Nameki and J.-M. Wong, F-theory and AdS 3/CFT 2 , JHEP08 (2017) 043 [arXiv:1705.04679] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    L. Wulff, All symmetric AdS n>2solutions of type-II supergravity, J. Phys.A 50 (2017) 495402 [arXiv:1706.02118] [INSPIRE].
  50. [50]
    L. Eberhardt, Supersymmetric AdS 3supergravity backgrounds and holography, JHEP02 (2018) 087 [arXiv:1710.09826] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of MathematicsBǒgaziçi UniversityIstanbulTurkey
  2. 2.Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRSLaboratoire de PhysiqueLyonFrance

Personalised recommendations