Advertisement

Journal of High Energy Physics

, 2019:134 | Cite as

Exotic decays of top partners with charge 5/3: bounds and opportunities

  • Ke-Pan Xie
  • Giacomo Cacciapaglia
  • Thomas FlackeEmail author
Open Access
Regular Article - Experimental Physics

Abstract

Exotic decays of top partners in new bosons are the norm in realistic models of a composite Higgs. We focus on the custodial charge-5/3 partner, which normally decays exclusively into tW+. The new channels include a colour-sextet, X5/3\( \overline{b} \)π6, as well as singly and doubly charged scalars, X5/3→ t𝜙+, b𝜙++. We use existing same-sign lepton searches to show that the new final states are constrained at the same level as the standard one. At the same time, exotic final states also offer opportunities for improvement: examples include a hard photon in X5/3→ t𝜙+→ tW+γ decays, and top-rich channels which arises in several exotic X5/3 decays.

Keywords

Exotics vector-like quarks Beyond Standard Model Hadron-Hadron scattering (experiments) same charge top pair 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys.B 365 (1991) 259 [INSPIRE].
  2. [2]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for Z b ̄b, Phys. Lett.B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].
  3. [3]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev.D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
  4. [4]
    M. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Light Kaluza Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys.B 759 (2006) 202 [hep-ph/0607106] [INSPIRE].
  5. [5]
    F. del Aguila, M. Ṕerez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP09 (2000) 011 [hep-ph/0007316] [INSPIRE].
  6. [6]
    M. Buchkremer, G. Cacciapaglia, A. Deandrea and L. Panizzi, Model independent framework for searches of top partners, Nucl. Phys.B 876 (2013) 376 [arXiv:1305.4172] [INSPIRE].
  7. [7]
    G. Cacciapaglia et al., Interplay of vector-like top partner multiplets in a realistic mixing set-up, JHEP09 (2015) 012 [arXiv:1502.00370] [INSPIRE].
  8. [8]
    ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying into high-pT W bosons and top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP08 (2018) 048 [arXiv:1806.01762] [INSPIRE].
  9. [9]
    ATLAS collaboration, Search for new phenomena in events with same-charge leptons and b-jets in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP12 (2018) 039 [arXiv:1807.11883] [INSPIRE].
  10. [10]
    CMS collaboration, Search for top quark partners with charge 5/3 in the same-sign dilepton and single-lepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP03 (2019) 082 [arXiv:1810.03188] [INSPIRE].
  11. [11]
    C. Dennis, M. Karagoz, G. Servant and J. Tseng, Multi-W events at LHC from a warped extra dimension with custodial symmetry, hep-ph/0701158 [INSPIRE].
  12. [12]
    R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP06 (2008) 026 [arXiv:0801.1679] [INSPIRE].
  13. [13]
    A. Atre et al., Model-independent searches for new quarks at the LHC, JHEP08 (2011) 080 [arXiv:1102.1987] [INSPIRE].
  14. [14]
    G. Cacciapaglia et al., Heavy vector-like top partners at the LHC and flavour constraints, JHEP03 (2012) 070 [arXiv:1108.6329] [INSPIRE].
  15. [15]
    C. Delaunay et al., Light non-degenerate composite partners at the LHC, JHEP02 (2014) 055 [arXiv:1311.2072] [INSPIRE].
  16. [16]
    G. Cacciapaglia et al., The LHC potential of vector-like quark doublets, JHEP11 (2018) 055 [arXiv:1806.01024] [INSPIRE].
  17. [17]
    CMS collaboration, Search for vectorlike light-flavor quark partners in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, Phys. Rev.D 97 (2018) 072008 [arXiv:1708.02510] [INSPIRE].
  18. [18]
    ATLAS collaboration, Search for pair production of a new heavy quark that decays into a W boson and a light quark in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Rev.D 92 (2015) 112007 [arXiv:1509.04261] [INSPIRE].
  19. [19]
    CMS collaboration, Search for single production of vector-like quarks decaying to a top quark and a W boson in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J.C 79 (2019) 90 [arXiv:1809.08597] [INSPIRE].
  20. [20]
    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A first top partner hunter’s guide, JHEP04 (2013) 004 [arXiv:1211.5663] [INSPIRE].
  21. [21]
    J. Mrazek and A. Wulzer, A strong sector at the LHC: top partners in same-sign dileptons, Phys. Rev.D 81 (2010) 075006 [arXiv:0909.3977] [INSPIRE].
  22. [22]
    A. Azatov, M. Salvarezza, M. Son and M. Spannowsky, Boosting top partner searches in composite Higgs models, Phys. Rev.D 89 (2014) 075001 [arXiv:1308.6601] [INSPIRE].
  23. [23]
    M. Backovíc, T. Flacke, S.J. Lee and G. Perez, LHC top partner searches beyond the 2 TeV mass region, JHEP09 (2015) 022 [arXiv:1409.0409] [INSPIRE].
  24. [24]
    O. Matsedonskyi, G. Panico and A. Wulzer, On the interpretation of top partners searches, JHEP12 (2014) 097 [arXiv:1409.0100] [INSPIRE].
  25. [25]
    G. Brooijmans et al., Les Houches 2015: physics at TeV colliders — new physics working group report, arXiv:1605.02684 [INSPIRE].
  26. [26]
    G. Ferretti and D. Karateev, Fermionic UV completions of composite Higgs models, JHEP03 (2014) 077 [arXiv:1312.5330] [INSPIRE].
  27. [27]
    G. Ferretti, Gauge theories of partial compositeness: scenarios for Run-II of the LHC, JHEP06 (2016) 107 [arXiv:1604.06467] [INSPIRE].
  28. [28]
    G. Cacciapaglia et al., Composite scalars at the LHC: the Higgs, the sextet and the octet, JHEP11 (2015) 201 [arXiv:1507.02283] [INSPIRE].
  29. [29]
    A. Agugliaro, G. Cacciapaglia, A. Deandrea and S. De Curtis, Vacuum misalignment and pattern of scalar masses in the SU(5)/SO(5) composite Higgs model, JHEP02 (2019) 089 [arXiv:1808.10175] [INSPIRE].
  30. [30]
    N. Bizot, G. Cacciapaglia and T. Flacke, Common exotic decays of top partners, JHEP06 (2018) 065 [arXiv:1803.00021] [INSPIRE].
  31. [31]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys.B 254 (1985) 299 [INSPIRE].
  32. [32]
    G. Cacciapaglia, H. Cai, A. Deandrea and A. Kushwaha, Composite Higgs and dark matter model in SU(6)/SO(6), arXiv:1904.09301 [INSPIRE].
  33. [33]
    T. Ma and G. Cacciapaglia, Fundamental composite 2HDM: SU(N ) with 4 flavours, JHEP03 (2016) 211 [arXiv:1508.07014] [INSPIRE].
  34. [34]
    I. Low, W. Skiba and D. Tucker-Smith, Little Higgses from an antisymmetric condensate, Phys. Rev.D 66 (2002) 072001 [hep-ph/0207243] [INSPIRE].
  35. [35]
    C. Cai, G. Cacciapaglia and H.-H. Zhang, Vacuum alignment in a composite 2HDM, JHEP01 (2019) 130 [arXiv:1805.07619] [INSPIRE].
  36. [36]
    A. Deandrea and N. Deutschmann, Multi-tops at the LHC, JHEP08 (2014) 134 [arXiv:1405.6119] [INSPIRE].
  37. [37]
    H. Han et al., Six top messages of new physics at the LHC, arXiv:1812.11286 [INSPIRE].
  38. [38]
    A. Alloul et al., FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  39. [39]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
  40. [40]
    T. Sj¨ostrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  41. [41]
    DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  42. [42]
    M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun.185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].
  43. [43]
    M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(α 4 ), Phys. Rev. Lett.110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].
  44. [44]
    M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP01 (2013) 080 [arXiv:1210.6832] [INSPIRE].
  45. [45]
    M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels, JHEP12 (2012) 054 [arXiv:1207.0236] [INSPIRE].
  46. [46]
    P. B¨arnreuther, M. Czakon and A. Mitov, Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections to q \( \overline{q} \)→ t \( \overline{t} \)+ X , Phys. Rev. Lett.109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].
  47. [47]
    M. Cacciari et al., Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett.B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE].
  48. [48]
    H.E. Logan and Y. Wu, Searching for the W γ decay of a charged Higgs boson, JHEP11 (2018) 121 [arXiv:1809.09127] [INSPIRE].
  49. [49]
    ATLAS collaboration, Search for production of vector-like top quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2016-013 (2016).
  50. [50]
    ATLAS collaboration, Search for supersymmetry at \( \sqrt{s} \) = 13 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector, Eur. Phys. J.C 76 (2016) 259 [arXiv:1602.09058] [INSPIRE].
  51. [51]
    R. Benbrik et al., Signatures of vector-like top partners decaying into new neutral scalar or pseudoscalar bosons, arXiv:1907.05929 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for Theoretical Physics, Department of Physics and AstronomySeoul National UniversitySeoulKorea
  2. 2.University of Lyon, Universit́e Claude Bernard Lyon 1LyonFrance
  3. 3.Institut de Physique des 2 Infinis de Lyon (IP2I), CNRS/IN2P3 UMR5822VilleurbanneFrance
  4. 4.Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS)DaejeonKorea

Personalised recommendations