Journal of High Energy Physics

, 2019:128 | Cite as

Higher derivative terms, toroidal compactification, and Weyl anomalies in six-dimensional (2, 0) theories

  • Clay CórdovaEmail author
  • Thomas T. Dumitrescu
  • Xi Yin
Open Access
Regular Article - Theoretical Physics


We systematically analyze the effective action on the moduli space of (2, 0) superconformal field theories in six dimensions, as well as their toroidal compactification to maximally supersymmetric Yang-Mills theories in five and four dimensions. We present a streamlined approach to non-renormalization theorems that constrain this effective action. The first several orders in its derivative expansion are determined by a one-loop calculation in five-dimensional Yang-Mills theory. This fixes the leading higher-derivative operators that describe the renormalization group flow into theories residing at singular points on the moduli space of the compactified (2, 0) theories. This understanding allows us to compute the a-type Weyl anomaly for all (2, 0) superconformal theories. We show that it decreases along every renormalization group flow that preserves (2, 0) supersymmetry, thereby establishing the a-theorem for this class of theories. Along the way, we encounter various field-theoretic arguments for the ADE classification of (2, 0) theories.


Conformal Field Theory Extended Supersymmetry M-Theory Supersym- metric Effective Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    S. Paban, S. Sethi and M. Stern, Constraints from extended supersymmetry in quantum mechanics, Nucl. Phys.B 534 (1998) 137 [hep-th/9805018] [INSPIRE].
  2. [2]
    S. Paban, S. Sethi and M. Stern, Summing up instantons in three-dimensional Yang-Mills theories, Adv. Theor. Math. Phys.3 (1999) 343 [hep-th/9808119] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  3. [3]
    S. Paban, S. Sethi and M. Stern, Supersymmetry and higher derivative terms in the effective action of Yang-Mills theories, JHEP06 (1998) 012 [hep-th/9806028] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Sethi and M. Stern, Supersymmetry and the Yang-Mills effective action at finite N, JHEP06 (1999) 004 [hep-th/9903049] [INSPIRE].
  5. [5]
    T. Maxfield and S. Sethi, The Conformal Anomaly of M5-Branes, JHEP06 (2012) 075 [arXiv:1204.2002] [INSPIRE].
  6. [6]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A Conjecture, Phys. Rev.D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Dine and N. Seiberg, Comments on higher derivative operators in some SUSY field theories, Phys. Lett.B 409 (1997) 239 [hep-th/9705057] [INSPIRE].
  8. [8]
    K.A. Intriligator, Anomaly matching and a Hopf-Wess-Zumino term in 6d, N = (2, 0) field theories, Nucl. Phys.B 581 (2000) 257 [hep-th/0001205] [INSPIRE].
  9. [9]
    J.L. Cardy, Is There a c Theorem in Four-Dimensions?, Phys. Lett.B 215 (1988) 749 [INSPIRE].
  10. [10]
    E. Witten, Some comments on string dynamics, in Future perspectives in string theory. Proceedings, Conference, Strings’95, Los Angeles, U.S.A., 13–18 March 1995, pp. 501–523 (1995) [hep-th/9507121] [INSPIRE].
  11. [11]
    A. Strominger, Open p-branes, Phys. Lett.B 383 (1996) 44 [hep-th/9512059] [INSPIRE].
  12. [12]
    E. Witten, Five-branes and M-theory on an orbifold, Nucl. Phys.B 463 (1996) 383 [hep-th/9512219] [INSPIRE].
  13. [13]
    N. Seiberg, Notes on theories with 16 supercharges, Nucl. Phys. Proc. Suppl.67 (1998) 158 [hep-th/9705117] [INSPIRE].
  14. [14]
    E. Witten, Geometric Langlands From Six Dimensions, arXiv:0905.2720 [INSPIRE].
  15. [15]
    D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS States, Adv. Theor. Math. Phys.17 (2013) 241 [arXiv:1006.0146] [INSPIRE].
  16. [16]
    G.W. Moore, Lecture Notes for Felix Klein Lectures, (2012).
  17. [17]
    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys.B 471 (1996) 121 [hep-th/9603003] [INSPIRE].
  18. [18]
    N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions, Phys. Lett.B 390 (1997) 169 [hep-th/9609161] [INSPIRE].
  19. [19]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Deformations of Superconformal Theories, JHEP11 (2016) 135 [arXiv:1602.01217] [INSPIRE].
  20. [20]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, JHEP03 (2019) 163 [arXiv:1612.00809] [INSPIRE].
  21. [21]
    D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP02 (2015) 172 [arXiv:1412.5148] [INSPIRE].
  22. [22]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP02 (2011) 011 [arXiv:1012.2880] [INSPIRE].
  23. [23]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-branes and Quantum 5D super-Yang-Mills, JHEP01 (2011) 083 [arXiv:1012.2882] [INSPIRE].
  24. [24]
    C. Papageorgakis and A.B. Royston, Revisiting Soliton Contributions to Perturbative Amplitudes, JHEP09 (2014) 128 [arXiv:1404.0016] [INSPIRE].
  25. [25]
    L. Álvarez-Gaumé and E. Witten, Gravitational Anomalies, Nucl. Phys.B 234 (1984) 269 [INSPIRE].
  26. [26]
    W.A. Bardeen and B. Zumino, Consistent and Covariant Anomalies in Gauge and Gravitational Theories, Nucl. Phys.B 244 (1984) 421 [INSPIRE].
  27. [27]
    J.A. Harvey, R. Minasian and G.W. Moore, NonAbelian tensor multiplet anomalies, JHEP09 (1998) 004 [hep-th/9808060] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  28. [28]
    P. Yi, Anomaly of (2, 0) theories, Phys. Rev.D 64 (2001) 106006 [hep-th/0106165] [INSPIRE].
  29. [29]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d SCFTs, PTEP2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].
  30. [30]
    A.A. Tseytlin and K. Zarembo, Magnetic interactions of D-branes and Wess-Zumino terms in superYang-Mills effective actions, Phys. Lett.B 474 (2000) 95 [hep-th/9911246] [INSPIRE].
  31. [31]
    S. Deser and A. Schwimmer, Geometric classification of conformal anomalies in arbitrary dimensions, Phys. Lett.B 309 (1993) 279 [hep-th/9302047] [INSPIRE].
  32. [32]
    A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett.43 (1986) 730 [INSPIRE].
  33. [33]
    Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, JHEP12 (2011) 099 [arXiv:1107.3987] [INSPIRE].
  34. [34]
    Z. Komargodski, The Constraints of Conformal Symmetry on RG Flows, JHEP07 (2012) 069 [arXiv:1112.4538] [INSPIRE].
  35. [35]
    H. Elvang, D.Z. Freedman, L.-Y. Hung, M. Kiermaier, R.C. Myers and S. Theisen, On renormalization group flows and the a-theorem in 6d, JHEP10 (2012) 011 [arXiv:1205.3994] [INSPIRE].
  36. [36]
    F. Bastianelli, S. Frolov and A.A. Tseytlin, Conformal anomaly of (2, 0) tensor multiplet in six-dimensions and AdS/CFT correspondence, JHEP02 (2000) 013 [hep-th/0001041] [INSPIRE].
  37. [37]
    C. Beem, L. Rastelli and B.C. van Rees, W symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE].
  38. [38]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP07 (1998) 023 [hep-th/9806087] [INSPIRE].
  39. [39]
    A.A. Tseytlin, R 4terms in 11 dimensions and conformal anomaly of (2, 0) theory, Nucl. Phys.B 584 (2000) 233 [hep-th/0005072] [INSPIRE].
  40. [40]
    M. Beccaria, G. Macorini and A.A. Tseytlin, Supergravity one-loop corrections on AdS 7and AdS 3, higher spins and AdS/CFT, Nucl. Phys.B 892 (2015) 211 [arXiv:1412.0489] [INSPIRE].
  41. [41]
    C. Vafa, Geometric origin of Montonen-Olive duality, Adv. Theor. Math. Phys.1 (1998) 158 [hep-th/9707131] [INSPIRE].
  42. [42]
    Y. Tachikawa, On S-duality of 5d super Yang-Mills on S 1 , JHEP11 (2011) 123 [arXiv:1110.0531] [INSPIRE].
  43. [43]
    Y. Tachikawa, On the 6d origin of discrete additional data of 4d gauge theories, JHEP05 (2014) 020 [arXiv:1309.0697] [INSPIRE].
  44. [44]
    D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys.B 526 (1998) 543 [hep-th/9708042] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Anomalies, renormalization group flows and the a-theorem in six-dimensional (1, 0) theories, JHEP10 (2016) 080 [arXiv:1506.03807] [INSPIRE].
  46. [46]
    E. Witten, Conformal Field Theory In Four And Six Dimensions, in Topology, geometry and quantum field theory. Proceedings, Symposium in the honour of the 60th birthday of Graeme Segal, Oxford, U.K., 24–29 June 2002, pp. 405–419 (2007) [arXiv:0712.0157] [INSPIRE].
  47. [47]
    H. Elvang and T.M. Olson, RG flows in d dimensions, the dilaton effective action and the a-theorem, JHEP03 (2013) 034 [arXiv:1209.3424] [INSPIRE].
  48. [48]
    A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP10 (2006) 014 [hep-th/0602178] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    E. Witten, Global Aspects of Current Algebra, Nucl. Phys.B 223 (1983) 422 [INSPIRE].
  50. [50]
    M.A. Luty, J. Polchinski and R. Rattazzi, The a-theorem and the Asymptotics of 4D Quantum Field Theory, JHEP01 (2013) 152 [arXiv:1204.5221] [INSPIRE].
  51. [51]
    Y. Wang and X. Yin, Constraining Higher Derivative Supergravity with Scattering Amplitudes, Phys. Rev.D 92 (2015) 041701 [arXiv:1502.03810] [INSPIRE].
  52. [52]
    Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, Higher derivative couplings in theories with sixteen supersymmetries, Phys. Rev.D 92 (2015) 125017 [arXiv:1503.02077] [INSPIRE].
  53. [53]
    A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev.D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].
  54. [54]
    C.W. Bernard, N.H. Christ, A.H. Guth and E.J. Weinberg, Instanton Parameters for Arbitrary Gauge Groups, Phys. Rev.D 16 (1977) 2967 [INSPIRE].
  55. [55]
    M. Movshev and A. Schwarz, Supersymmetric Deformations of Maximally Supersymmetric Gauge Theories, JHEP09 (2012) 136 [arXiv:0910.0620] [INSPIRE].
  56. [56]
    G. Bossard, P.S. Howe, U. Lindström, K.S. Stelle and L. Wulff, Integral invariants in maximally supersymmetric Yang-Mills theories, JHEP05 (2011) 021 [arXiv:1012.3142] [INSPIRE].
  57. [57]
    C.-M. Chang, Y.-H. Lin, Y. Wang and X. Yin, Deformations with Maximal Supersymmetries Part 1: On-shell Formulation, arXiv:1403.0545 [INSPIRE].
  58. [58]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press (2007) [INSPIRE].
  59. [59]
    E.A. Bergshoeff, A. Bilal, M. de Roo and A. Sevrin, Supersymmetric nonAbelian Born-Infeld revisited, JHEP07 (2001) 029 [hep-th/0105274] [INSPIRE].
  60. [60]
    Z. Bern, J.J. Carrasco, L.J. Dixon, M.R. Douglas, M. von Hippel and H. Johansson, D = 5 maximally supersymmetric Yang-Mills theory diverges at six loops, Phys. Rev.D 87 (2013) 025018 [arXiv:1210.7709] [INSPIRE].
  61. [61]
    R. Slansky, Group Theory for Unified Model Building, Phys. Rept.79 (1981) 1 [INSPIRE].
  62. [62]
    S. Deser, A. Gomberoff, M. Henneaux and C. Teitelboim, Duality, selfduality, sources and charge quantization in Abelian N form theories, Phys. Lett.B 400 (1997) 80 [hep-th/9702184] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    K. Intriligator, 6d, N = (1, 0) Coulomb branch anomaly matching, JHEP10 (2014) 162 [arXiv:1408.6745] [INSPIRE].
  64. [64]
    M. Henningson, Self-dual strings in six dimensions: Anomalies, the ADE-classification and the world-sheet WZW-model, Commun. Math. Phys.257 (2005) 291 [hep-th/0405056] [INSPIRE].
  65. [65]
    N. Seiberg and W. Taylor, Charge Lattices and Consistency of 6D Supergravity, JHEP06 (2011) 001 [arXiv:1103.0019] [INSPIRE].
  66. [66]
    Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, Interpolating the Coulomb Phase of Little String Theory, JHEP12 (2015) 022 [arXiv:1502.01751] [INSPIRE].
  67. [67]
    H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].
  68. [68]
    A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and Duality, JHEP04 (2014) 001 [arXiv:1401.0740] [INSPIRE].
  69. [69]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP07 (2013) 149 [arXiv:1305.3924] [INSPIRE].
  70. [70]
    O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities for orthogonal groups, JHEP08 (2013) 099 [arXiv:1307.0511] [INSPIRE].
  71. [71]
    D. Gaiotto, G.W. Moore and Y. Tachikawa, On 6d N = (2, 0) theory compactified on a Riemann surface with finite area, PTEP2013 (2013) 013B03 [arXiv:1110.2657] [INSPIRE].
  72. [72]
    C. Cheung and D. O’Connell, Amplitudes and Spinor-Helicity in Six Dimensions, JHEP07 (2009) 075 [arXiv:0902.0981] [INSPIRE].
  73. [73]
    T. Dennen, Y.-t. Huang and W. Siegel, Supertwistor space for 6D maximal super Yang-Mills, JHEP04 (2010) 127 [arXiv:0910.2688] [INSPIRE].
  74. [74]
    R.H. Boels and D. O’Connell, Simple superamplitudes in higher dimensions, JHEP06 (2012) 163 [arXiv:1201.2653] [INSPIRE].
  75. [75]
    M. Movshev, Deformation of maximally supersymmetric Yang-Mills theory in dimensions 10. An Algebraic approach, hep-th/0601010 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Society of FellowsHarvard UniversityCambridgeU.S.A.
  2. 2.Department of PhysicsHarvard UniversityCambridgeU.S.A.

Personalised recommendations