Advertisement

Journal of High Energy Physics

, 2019:114 | Cite as

Spontaneous symmetry breaking in fermionic random matrix model

  • Irina Aref’evaEmail author
  • Igor Volovich
Open Access
Regular Article - Theoretical Physics
  • 121 Downloads

Abstract

A fermionic random matrix model, which is a 0-dimensional version of the SYK model with replicas, is considered. The replica-off-diagonal correlation functions vanish at finite N, but we show that they do not vanish in the large N limit due to spontaneous symmetry breaking. We use the Bogoliubov quasi-averages approach to studying phase transitions. The consideration may be relevant to the study of the problem of existence of the spin glass phase in fermionic models.

Keywords

Spontaneous Symmetry Breaking 1/N Expansion Random Systems 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    L.D. Landau, On the theory of phase transitions, in Collected Papers. Volume 1, Nauka, Moscow Russia (1969), pp. 234-252 [Zh. Eksp. Teor. Fiz. 7 (1937) 19] [INSPIRE].
  2. [2]
    N.N. Bogoliubov, Lectures on quantum statistics. Volume 2: Quasi-Averages, Gordon and Breach Science Publishers (1970), republished in Collection of Scientific Works in Twelve Volumes: Statistical Mechanics. Volume 6, Nauka, Moscow Russia (2007).Google Scholar
  3. [3]
    Y. Nambu, Quasiparticles and Gauge Invariance in the Theory of Superconductivity, Phys. Rev.117 (1960) 648 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Weinberg, The quantum theory of fields. Volume 2: Modern applications, Cambridge University Press, Cambridge U.K. (1996).Google Scholar
  5. [5]
    M. Mezard, G. Parisi and M. Virasoro, Spin Glass Theory and beyond, World Scientific (1987).Google Scholar
  6. [6]
    J.S. Cotler et al., Black Holes and Random Matrices, JHEP05 (2017) 118 [Erratum JHEP09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
  7. [7]
    I. Aref’eva and I. Volovich, Notes on the SYK model in real time, Theor. Math. Phys.197 (2018)1650 [Teor. Mat. Fiz.197 (2018) 296] [arXiv:1801.08118] [INSPIRE].
  8. [8]
    P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].
  9. [9]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Kitaev, A simple model of quantum holography, talk given at the Entanglement in Strongly-Correlated Quantum Matter, Santa Barbara, California, U.S.A., 6 April-2 July 2015 and online at http://online.kitp.ucsb.edu/online/entangled15/.
  11. [11]
    S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev.X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    W.F. Wreszinski and V.A. Zagrebnov, Bogoliubov quasi-averages: spontaneous symmetry breaking and algebra of fluctuations, Theor. Math. Phys.194 (2018) 157 [arXiv:1704.00190] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    G. Gur-Ari, R. Mahajan and A. Vaezi, Does the SYK model have a spin glass phase?, JHEP11 (2018)070 [arXiv:1806.10145] [INSPIRE].
  14. [14]
    A. Georges, O. Parcollet and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev.B 63 (2001) 134406 [cond-mat/0009388].
  15. [15]
    J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP04 (2016)001 [arXiv:1601.06768] [INSPIRE].
  16. [16]
    W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions, Phys. Rev.B 94 (2016) 035135 [arXiv:1603.05246] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016)106002 [arXiv:1604.07818] [INSPIRE].
  18. [18]
    A.M. García-Garćıa and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].
  19. [19]
    I. Aref’eva, M. Khramtsov, M. Tikhanovskaya and I. Volovich, Replica-nondiagonal solutions in the SYK model, JHEP07 (2019) 113 [arXiv:1811.04831] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    V.V. Belokurov and E.T. Shavgulidze, Simple rules of functional integration in the Schwarzian theory: SYK correlators, arXiv:1811.11863 [INSPIRE].
  21. [21]
    H. Wang, D. Bagrets, A.L. Chudnovskiy and A. Kamenev, On the replica structure of Sachdev-Ye-Kitaev model, arXiv:1812.02666 [INSPIRE].
  22. [22]
    J. Kim, I.R. Klebanov, G. Tarnopolsky and W. Zhao, Symmetry Breaking in Coupled SYK or Tensor Models, Phys. Rev.X 9 (2019) 021043 [arXiv:1902.02287] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
  24. [24]
    A.M. Garc ıa-Garćıa, T. Nosaka, D. Rosa and J.J.M. Verbaarschot, Quantum chaos transition in a two-site Sachdev-Ye-Kitaev model dual to an eternal traversable wormhole, Phys. Rev.D 100 (2019) 026002 [arXiv:1901.06031] [INSPIRE].
  25. [25]
    V.S. Vladimirov and I. Volovich, Superanalysis. I. Differential Calculus, Theor. Math. Phys.59 (1984)317 [INSPIRE].
  26. [26]
    V.S. Vladimirov and I. Volovich, Superanalysis. II. Integral calculus, Theor. Math. Phys.60 (1984)743.Google Scholar
  27. [27]
    P. Deift, T. Kriecherbauer, K.T-R. Mclaughlin, S. Venakides and X. Zhou, Strong Asymptotics of Orthogonal Polynomials with Respect to Exponential Weights, Commun. Pure Appl. Math.52 (1999) 1491.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations