Journal of High Energy Physics

, 2019:110 | Cite as

How many fluxes fit in an EFT?

  • Stefano LanzaEmail author
  • Fernando Marchesano
  • Luca Martucci
  • Dmitri Sorokin
Open Access
Regular Article - Theoretical Physics


We extend the recent construction of 4d \( \mathcal{N}=1 \) three-form Lagrangians by including the most general three-form multiplets necessary to reproduce any F-term potential in string flux compactifications. In this context we find an obstruction to dualize all fluxes to three-forms in the effective field theory. This implies that, generically, a single EFT cannot capture all the membrane-mediated flux transitions expected from a string theory construction, but only a sublattice of them. The obstruction can be detected from the maximal number of three-forms per scalar in any supermultiplet, and from the gaugings involving three-forms that appear in the EFT. Some gaugings are related to the appearance of fluxes in the tadpole conditions, and give a general obstruction. Others are related to the anomalous axionic strings present in a specific compactification regime. We illustrate the structure of the three-form Lagrangian in type II and F/M-theory setups, where we argue that the above obstructions correlate with the different 4d membrane tensions with respect to the EFT energy scales.


D-branes Flux compactifications Supergravity Models Supersymmetric Effective Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].
  2. [2]
    T.D. Brennan, F. Carta and C. Vafa, The string landscape, the swampland and the missing corner, PoS(TASI2017)015 [arXiv:1711.00864] [INSPIRE].
  3. [3]
    E. Palti, The swampland: introduction and review, Fortsch. Phys.67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  4. [4]
    H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys.B 766 (2007) 21 [hep-th/0605264] [INSPIRE].
  5. [5]
    F. Baume and E. Palti, Backreacted axion field ranges in string theory, JHEP08 (2016) 043 [arXiv:1602.06517] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    D. Klaewer and E. Palti, Super-Planckian spatial field variations and quantum gravity, JHEP01 (2017) 088 [arXiv:1610.00010] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys.79 (2007) 733 [hep-th/0610102] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    F. Denef, M.R. Douglas and S. Kachru, Physics of string flux compactifications, Ann. Rev. Nucl. Part. Sci.57 (2007) 119 [hep-th/0701050] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F. Marchesano, G. Shiu and A.M. Uranga, F-term axion monodromy inflation, JHEP09 (2014) 184 [arXiv:1404.3040] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Bielleman, L.E. Ibáñez and I. Valenzuela, Minkowski 3-forms, flux string vacua, axion stability and naturalness, JHEP12 (2015) 119 [arXiv:1507.06793] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    F. Carta, F. Marchesano, W. Staessens and G. Zoccarato, Open string multi-branched and Kähler potentials, JHEP09 (2016) 062 [arXiv:1606.00508] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  12. [12]
    A. Herraez, L.E. Ibáñez, F. Marchesano and G. Zoccarato, The type IIA flux potential, 4-forms and freed-witten anomalies, JHEP09 (2018) 018 [arXiv:1802.05771] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    F. Farakos, S. Lanza, L. Martucci and D. Sorokin, Three-forms in supergravity and flux compactifications, Eur. Phys. J.C 77 (2017) 602 [arXiv:1706.09422] [INSPIRE].
  14. [14]
    I. Bandos et al., Three-forms, dualities and membranes in four-dimensional supergravity, JHEP07 (2018) 028 [arXiv:1803.01405] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys.B 584 (2000) 69 [Erratum ibid.B 608 (2001) 477] [hep-th/9906070] [INSPIRE].
  16. [16]
    A. Font, A. Herráez and L.E. Ibáñez, The swampland distance conjecture and towers of tensionless branes, JHEP08 (2019) 044 [arXiv:1904.05379] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    N. Kaloper and L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett.102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP[20] (2011) 023 [arXiv:1101.0026] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    P. Candelas and X. de la Ossa, Moduli space of Calabi-Yau manifolds, Nucl. Phys.B 355 (1991) 455 [INSPIRE].
  20. [20]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev.D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].
  21. [21]
    G. Dall’Agata, K. Lechner and M. Tonin, D = 10, N = I I B supergravity: Lorentz invariant actions and duality, JHEP07 (1998) 017 [hep-th/9806140] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    E. Bergshoeff et al., New formulations of D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav.18 (2001) 3359 [hep-th/0103233] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    J. Evslin and L. Martucci, D-brane networks in flux vacua, generalized cycles and calibrations, JHEP07 (2007) 040 [hep-th/0703129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    M. Berasaluce-Gonzalez, P.G. Camara, F. Marchesano and A.M. Uranga, Zp charged branes in flux compactifications, JHEP04 (2013) 138 [arXiv:1211.5317] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  25. [25]
    E. Witten, D-branes and k-theory, JHEP12 (1998) 019 [hep-th/9810188] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  26. [26]
    E. Dudas, Three-form multiplet and inflation, JHEP12 (2014) 014 [arXiv:1407.5688] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    I. Valenzuela, Backreaction issues in axion monodromy and Minkowski 4-forms, JHEP06 (2017) 098 [arXiv:1611.00394] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    D. Escobar, F. Marchesano and W. Staessens, Type IIA flux vacua with mobile D6-branes, JHEP01 (2019) 096 [arXiv:1811.09282] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    D. Escobar, F. Marchesano and W. Staessens, Type IIA flux vacua and 𝛼’-corrections, JHEP06 (2019) 129 [arXiv:1812.08735] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    I. Buchbinder and S. Kuzenko, Ideas and methods of supersymmetry and supergravity: A Walk through superspace, IOP, U.K. (1998).zbMATHGoogle Scholar
  31. [31]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012).zbMATHCrossRefGoogle Scholar
  32. [32]
    N. Kaloper and L. Sorbo, Where in the string landscape is quintessence, Phys. Rev.D 79 (2009) 043528 [arXiv:0810.5346] [INSPIRE].
  33. [33]
    M.J. Duncan and L.G. Jensen, Four forms and the vanishing of the cosmological constant, Nucl. Phys.B 336 (1990) 100 [INSPIRE].
  34. [34]
    T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev.D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
  35. [35]
    J. Polchinski, Monopoles, duality and string theory, Int. J. Mod. Phys.A 19S1 (2004) 145 [hep-th/0304042] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    I. Bandos et al., Higher forms and membranes in 4D supergravities, Fortsch. Phys.67 (2019) 1910020 [arXiv:1903.02841] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    I. Bandos, L. Martucci, D. Sorokin and M. Tonin, Brane induced supersymmetry breaking and de Sitter supergravity, JHEP02 (2016) 080 [arXiv:1511.03024] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    I. Bandos et al., The Goldstino brane, the constrained superfields and matter in \( \mathcal{N}=1 \)supergravity, JHEP11 (2016) 109 [arXiv:1608.05908] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    I. Bandos, S. Lanza and D. Sorokin, Supermembranes and domain walls in \( \mathcal{N}=1 \), D = 4 SYM, arXiv:1905.02743 [INSPIRE].
  40. [40]
    I. Bandos, Superstring at the boundary of open supermembrane interacting with D = 4 supergravity and matter supermultiplets, arXiv:1906.09872 [INSPIRE].
  41. [41]
    P. Koerber and L. Martucci, From ten to four and back again: how to generalize the geometry, JHEP08 (2007) 059 [arXiv:0707.1038] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    L. Martucci, Warping the Kähler potential of F-theory/IIB flux compactifications, JHEP03 (2015) 067 [arXiv:1411.2623] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  43. [43]
    L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1 backgrounds, JHEP11 (2005) 048 [hep-th/0507099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    K. Becker, M. Becker and A. Strominger, Five-branes, membranes and nonperturbative string theory, Nucl. Phys.B 456 (1995) 130 [hep-th/9507158] [INSPIRE].
  45. [45]
    T.W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys.B 699 (2004) 387 [hep-th/0403067] [INSPIRE].
  46. [46]
    L. Martucci, Warped Kähler potentials and fluxes, JHEP01 (2017) 056 [arXiv:1610.02403] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  47. [47]
    J. Gomis, F. Marchesano and D. Mateos, An open string landscape, JHEP11 (2005) 021 [hep-th/0506179] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    F. Denef, Les houches lectures on constructing string vacua, Les Houches87 (2008) 483 [arXiv:0803.1194] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav.27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    T. Weigand, F-theory, PoS(TASI2017)016 [arXiv:1806.01854] [INSPIRE].
  51. [51]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP08 (1999) 023 [hep-th/9908088] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    A. Collinucci and R. Savelli, On flux quantization in F-theory, JHEP02 (2012) 015 [arXiv:1011.6388] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    A. Collinucci, F. Denef and M. Esole, D-brane deconstructions in IIB orientifolds, JHEP02 (2009) 005 [arXiv:0805.1573] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    T.W. Grimm and J. Louis, The effective action of type IIA Calabi-Yau orientifolds, Nucl. Phys.B 718 (2005) 153 [hep-th/0412277] [INSPIRE].
  55. [55]
    T.W. Grimm and D. Vieira Lopes, The N = 1 effective actions of D-branes in Type IIA and IIB orientifolds, Nucl. Phys.B 855 (2012) 639 [arXiv:1104.2328] [INSPIRE].
  56. [56]
    M. Kerstan and T. Weigand, The effective action of D6-branes in N = 1 type IIA orientifolds, JHEP06 (2011) 105 [arXiv:1104.2329] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    L.E. Ibanez and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012).zbMATHGoogle Scholar
  58. [58]
    T.R. Taylor and C. Vafa, R R flux on Calabi-Yau and partial supersymmetry breaking, Phys. Lett.B 474 (2000) 130 [hep-th/9912152] [INSPIRE].
  59. [59]
    S. Kachru and A.-K. Kashani-Poor, Moduli potentials in type IIA compactifications with RR and NS flux, JHEP03 (2005) 066 [hep-th/0411279] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    G. Aldazabal, P.G. Camara, A. Font and L.E. Ibáñez, More dual fluxes and moduli fixing, JHEP05 (2006) 070 [hep-th/0602089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    B. Wecht, Lectures on nongeometric flux compactifications, Class. Quant. Grav.24 (2007) S773 [arXiv:0708.3984] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    X. Gao, P. Shukla and R. Sun, Symplectic formulation of the type IIA nongeometric scalar potential, Phys. Rev.D 98 (2018) 046009 [arXiv:1712.07310] [INSPIRE].
  63. [63]
    J.-P. Derendinger, C. Kounnas, P.M. Petropoulos and F. Zwirner, Superpotentials in IIA compactifications with general fluxes, Nucl. Phys.B 715 (2005) 211 [hep-th/0411276] [INSPIRE].
  64. [64]
    G. Dall’Agata and S. Ferrara, Gauged supergravity algebras from twisted tori compactifications with fluxes, Nucl. Phys.B 717 (2005) 223 [hep-th/0502066] [INSPIRE].
  65. [65]
    J. Shelton, W. Taylor and B. Wecht, Generalized flux vacua, JHEP02 (2007) 095 [hep-th/0607015] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    F. Marchesano, D. Regalado and G. Zoccarato, On D-brane moduli stabilisation, JHEP11 (2014) 097 [arXiv:1410.0209] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    L. Martucci, D-branes on general N = 1 backgrounds: superpotentials and D-terms, JHEP06 (2006) 033 [hep-th/0602129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    F. Marchesano, D6-branes and torsion, JHEP05 (2006) 019 [hep-th/0603210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    P.G. Camara, A. Font and L.E. Ibáñez, Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold, JHEP09 (2005) 013 [hep-th/0506066] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on type IIA string theory, JHEP12 (2007) 095 [arXiv:0711.2512] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    O. Aharony, D. Jafferis, A. Tomasiello and A. Zaffaroni, Massive type IIA string theory cannot be strongly coupled, JHEP11 (2010) 047 [arXiv:1007.2451] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    C. Beasley and E. Witten, A Note on fluxes and superpotentials in M-theory compactifications on manifolds of G 2holonomy, JHEP07 (2002) 046 [hep-th/0203061] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  73. [73]
    S. Andriolo et al., Compact G2 holonomy spaces from SU(3) structures, JHEP03 (2019) 059 [arXiv:1811.00063] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  74. [74]
    E. Witten, Duality relations among topological effects in string theory, JHEP05 (2000) 031 [hep-th/9912086] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  75. [75]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).zbMATHGoogle Scholar
  76. [76]
    T. Eguchi, P.B. Gilkey and A.J. Hanson, Gravitation, gauge theories and differential geometry, Phys. Rept.66 (1980) 213 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    S.J. Gates, Jr., Super P-form gauge superfields, Nucl. Phys.B 184 (1981) 381 [INSPIRE].
  78. [78]
    U. Lindström and M. Roček, Scalar tensor duality and N = 1, N = 2 nonlinear σ-models, Nucl. Phys.B 222 (1983) 285 [INSPIRE].
  79. [79]
    I.A. Bandos and J.M. Isidro, D = 4 supergravity dynamically coupled to superstring in a superfield Lagrangian approach, Phys. Rev.D 69 (2004) 085009 [hep-th/0308102] [INSPIRE].
  80. [80]
    G. Dvali, R. Jackiw and S.-Y. Pi, Topological mass generation in four dimensions, Phys. Rev. Lett.96 (2006) 081602 [hep-th/0511175] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].
  82. [82]
    G. Dvali, S. Folkerts and A. Franca, How neutrino protects the axion, Phys. Rev.D 89 (2014) 105025 [arXiv:1312.7273] [INSPIRE].
  83. [83]
    H.-C. Kim, G. Shiu and C. Vafa, Branes and the swampland, Phys. Rev.D 100 (2019) 066006 [arXiv:1905.08261] [INSPIRE].
  84. [84]
    M.R. Douglas, The statistics of string/M theory vacua, JHEP05 (2003) 046 [hep-th/0303194] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  85. [85]
    P.S. Howe and R.W. Tucker, Scale invariance in superspace, Phys. Lett.B 80 (1978) 138 [INSPIRE].
  86. [86]
    V. Kaplunovsky and J. Louis, Field dependent gauge couplings in locally supersymmetric effective quantum field theories, Nucl. Phys.B 422 (1994) 57 [hep-th/9402005] [INSPIRE].
  87. [87]
    E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills theories with local supersymmetry: Lagrangian, transformation laws and super-Higgs effect, Nucl. Phys.B 212 (1983) 413 [INSPIRE].
  88. [88]
    P. Adamietz, P. Binetruy, G. Girardi and R. Grimm, Supergravity and matter: linear multiplet couplings and Kähler anomaly cancellation, Nucl. Phys.B 401 (1993) 257 [INSPIRE].
  89. [89]
    P. Binetruy, G. Girardi and R. Grimm, Supergravity couplings: a geometric formulation, Phys. Rept.343 (2001) 255 [hep-th/0005225] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  90. [90]
    F. Farakos, S. Lanza, L. Martucci and D. Sorokin, Three-forms, supersymmetry and string compactifications, Phys. Part. Nucl.49 (2018) 823 [arXiv:1712.09366] [INSPIRE].zbMATHCrossRefGoogle Scholar
  91. [91]
    J.D. Brown and C. Teitelboim, Dynamical neutralization of the cosmological constant, Phys. Lett.B 195 (1987) 177 [INSPIRE].
  92. [92]
    K. Groh, J. Louis and J. Sommerfeld, Duality and couplings of 3-form-multiplets in N = 1 supersymmetry, JHEP05 (2013) 001 [arXiv:1212.4639] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Dipartimento di Fisica e Astronomia “Galileo Galilei”Università degli Studi di PadovaPadovaItaly
  2. 2.INFN — Sezione di PadovaPadovaItaly
  3. 3.Instituto de Física Teórica UAM-CSICMadridSpain

Personalised recommendations