Advertisement

Journal of High Energy Physics

, 2019:101 | Cite as

Nonrelativistic string theory in background fields

  • Jaume Gomis
  • Jihwan Oh
  • Ziqi YanEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Nonrelativistic string theory is a unitary, ultraviolet finite quantum gravity theory with a nonrelativistic string spectrum. The vertex operators of the worldsheet theory determine the spacetime geometry of nonrelativistic string theory, known as the string Newton-Cartan geometry. We compute the Weyl anomaly of the nonrelativistic string worldsheet sigma model describing strings propagating in a string Newton-Cartan geometry, Kalb-Ramond and dilaton background. We derive the equations of motion that dictate the backgrounds on which nonrelativistic string theory can be consistently defined quantum mechanically. The equations of motion we find from our study of the conformal anomaly of the worldsheet theory are to nonrelativistic string theory what the (super)gravity equations of motion are to relativistic string theory.

Keywords

Anomalies in Field and String Theories Bosonic Strings Conformal Field Theory Sigma Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys.42 (2001) 3127 [hep-th/0009181] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    I.R. Klebanov and J.M. Maldacena, (1 + 1)-dimensional NCOS and its U(N) gauge theory dual, Int. J. Mod. Phys.A 16 (2001) 922 [hep-th/0006085] [INSPIRE].
  3. [3]
    U.H. Danielsson, A. Guijosa and M. Kruczenski, IIA/B, wound and wrapped, JHEP10 (2000) 020 [hep-th/0009182] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J. Gomis, J. Gomis and K. Kamimura, Non-relativistic superstrings: A New soluble sector of AdS 5× S 5 , JHEP12 (2005) 024 [hep-th/0507036] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Brugues, T. Curtright, J. Gomis and L. Mezincescu, Non-relativistic strings and branes as non-linear realizations of Galilei groups, Phys. Lett.B 594 (2004) 227 [hep-th/0404175] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    R. Andringa, E. Bergshoeff, J. Gomis and M. de Roo, ‘Stringy’ Newton-Cartan Gravity, Class. Quant. Grav.29 (2012) 235020 [arXiv:1206.5176] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Brugues, J. Gomis and K. Kamimura, Newton-Hooke algebras, non-relativistic branes and generalized pp-wave metrics, Phys. Rev.D 73 (2006) 085011 [hep-th/0603023] [INSPIRE].
  8. [8]
    E.A. Bergshoeff, J. Gomis, J. Rosseel, C. S¸im¸sek and Z. Yan, String Theory and String Newton-Cartan Geometry, arXiv:1907.10668 [INSPIRE].
  9. [9]
    E. Bergshoeff, J. Gomis and Z. Yan, Nonrelativistic String Theory and T-duality, JHEP11 (2018) 133 [arXiv:1806.06071] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    C. Batlle, J. Gomis and D. Not, Extended Galilean symmetries of non-relativistic strings, JHEP02 (2017) 049 [arXiv:1611.00026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J. Gomis and P.K. Townsend, The Galilean Superstring, JHEP02 (2017) 105 [arXiv:1612.02759] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    C. Batlle, J. Gomis, L. Mezincescu and P.K. Townsend, Tachyons in the Galilean limit, JHEP04 (2017) 120 [arXiv:1702.04792] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    T. Harmark, J. Hartong and N.A. Obers, Nonrelativistic strings and limits of the AdS/CFT correspondence, Phys. Rev.D 96 (2017) 086019 [arXiv:1705.03535] [INSPIRE].
  14. [14]
    J. Klusoň, Remark About Non-Relativistic String in Newton-Cartan Background and Null Reduction, JHEP05 (2018) 041 [arXiv:1803.07336] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J. Klusoň, Nonrelativistic String Theory σ-model and Its Canonical Formulation, Eur. Phys. J.C 79 (2019) 108 [arXiv:1809.10411] [INSPIRE].
  16. [16]
    T. Harmark, J. Hartong, L. Menculini, N.A. Obers and Z. Yan, Strings with Non-Relativistic Conformal Symmetry and Limits of the AdS/CFT Correspondence, JHEP11 (2018) 190 [arXiv:1810.05560] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    J. Klusoň, Note About T-duality of Non-Relativistic String, JHEP08 (2019) 074 [arXiv:1811.12658] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Klusoň, (m, n)-String and D1-Brane in Stringy Newton-Cartan Background, JHEP04 (2019) 163 [arXiv:1901.11292] [INSPIRE].
  19. [19]
    D. Roychowdhury, Probing tachyon kinks in Newton-Cartan background, Phys. Lett.B 795 (2019) 225 [arXiv:1903.05890] [INSPIRE].
  20. [20]
    D. Roychowdhury, On integrability in nonrelativistic string theory, arXiv:1904.06485 [INSPIRE].
  21. [21]
    T. Harmark, J. Hartong, L. Menculini, N.A. Obers and G. Oling, Relating non-relativistic string theories, arXiv:1907.01663 [INSPIRE].
  22. [22]
    A.D. Gallegos, U. Gürsoy and N. Zinnato, Torsional Newton Cartan gravity from non-relativistic strings, arXiv:1906.01607 [INSPIRE].
  23. [23]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2007) [INSPIRE].
  24. [24]
    U.H. Danielsson, A. Guijosa and M. Kruczenski, Newtonian gravitons and D-brane collective coordinates in wound string theory, JHEP03 (2001) 041 [hep-th/0012183] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    E.A. Bergshoeff, K.T. Grosvenor, C. Simsek and Z. Yan, An Action for Extended String Newton-Cartan Gravity, JHEP01 (2019) 178 [arXiv:1810.09387] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    P. Deligne et al. eds., Quantum fields and strings: A course for mathematicians. Vol. 1, 2, American Mathematical Society (1999) [INSPIRE].
  27. [27]
    S.M. Ko, C. Melby-Thompson, R. Meyer and J.-H. Park, Dynamics of Perturbations in Double Field Theory & Non-Relativistic String Theory, JHEP12 (2015) 144 [arXiv:1508.01121] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  28. [28]
    K. Morand and J.-H. Park, Classification of non-Riemannian doubled-yet-gauged spacetime, Eur. Phys. J.C 77 (2017) 685 [Erratum ibid.C 78 (2018) 901] [arXiv:1707.03713] [INSPIRE].
  29. [29]
    J.-H. Park, Green-Schwarz superstring on doubled-yet-gauged spacetime, JHEP11 (2016) 005 [arXiv:1609.04265] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    G. Papageorgiou and B.J. Schroers, A Chern-Simons approach to Galilean quantum gravity in 2 + 1 dimensions, JHEP11 (2009) 009 [arXiv:0907.2880] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    E.A. Bergshoeff and J. Rosseel, Three-Dimensional Extended Bargmann Supergravity, Phys. Rev. Lett.116 (2016) 251601 [arXiv:1604.08042] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Hartong, Y. Lei and N.A. Obers, Nonrelativistic Chern-Simons theories and three-dimensional Hořava-Lifshitz gravity, Phys. Rev.D 94 (2016) 065027 [arXiv:1604.08054] [INSPIRE].
  33. [33]
    N. Ozdemir, M. Ozkan, O. Tunca and U. Zorba, Three-Dimensional Extended Newtonian (Super)Gravity, JHEP05 (2019) 130 [arXiv:1903.09377] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    D. Hansen, J. Hartong and N.A. Obers, Action Principle for Newtonian Gravity, Phys. Rev. Lett.122 (2019) 061106 [arXiv:1807.04765] [INSPIRE].
  35. [35]
    E. Bergshoeff, J.M. Izquierdo, T. Ortín and L. Romano, Lie Algebra Expansions and Actions for Non-Relativistic Gravity, JHEP08 (2019) 048 [arXiv:1904.08304] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    L. Mezincescu and P.K. Townsend, Anyons from Strings, Phys. Rev. Lett.105 (2010) 191601 [arXiv:1008.2334] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Berkeley Center for Theoretical Physics and Department of PhysicsUniversity of CaliforniaBerkeleyU.S.A.

Personalised recommendations