Advertisement

Localization of gauge bosons and the Higgs mechanism on topological solitons in higher dimensions

  • Minoru Eto
  • Masaki KawaguchiEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We provide complete and self-contained formulas about localization of mass-less/massive Abelian gauge fields on topological solitons in generic D dimensions via a field dependent gauge kinetic term. The localization takes place when a stabilizer (a scalar field) is condensed in the topological soliton. We show that the localized gauge bosons are massless when the stabilizer is neutral. On the other hand, they become massive for the charged stabilizer as a consequence of interplay between the localization mechanism and the Higgs mechanism. For concreteness, we give two examples in six dimensions. The one is domain wall intersections and the other is an axially symmetric soliton background.

Keywords

Field Theories in Higher Dimensions Solitons Monopoles and Instantons Spontaneous Symmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett.B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett.B 436 (1998) 257[hep-ph/9804398] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett.83 (1999) 4690 [hep-th/9906064] [INSPIRE].
  5. [5]
    V.A. Rubakov and M.E. Shaposhnikov, Do We Live Inside a Domain Wall?, Phys. Lett.125B (1983) 136 [INSPIRE].
  6. [6]
    R. Jackiw and C. Rebbi, Solitons with Fermion Number 1/2, Phys. Rev.D 13 (1976) 3398 [INSPIRE].
  7. [7]
    M. Cvetič, S. Griffies and S.-J. Rey, Static domain walls in N = 1 supergravity, Nucl. Phys.B 381 (1992) 301 [hep-th/9201007] [INSPIRE].
  8. [8]
    O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth-dimension with scalars and gravity, Phys. Rev.D 62 (2000) 046008 [hep-th/9909134] [INSPIRE].
  9. [9]
    C. Csáki, J. Erlich, T.J. Hollowood and Y. Shirman, Universal aspects of gravity localized on thick branes, Nucl. Phys.B 581 (2000) 309 [hep-th/0001033] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    M. Eto, N. Maru, N. Sakai and T. Sakata, Exactly solved BPS wall and winding number in N = 1 supergravity, Phys. Lett.B 553 (2003) 87 [hep-th/0208127] [INSPIRE].
  11. [11]
    M. Eto, S. Fujita, M. Naganuma and N. Sakai, BPS Multi-walls in five-dimensional supergravity, Phys. Rev.D 69 (2004) 025007 [hep-th/0306198] [INSPIRE].
  12. [12]
    M. Eto and N. Sakai, Solvable models of domain walls in N = 1 supergravity, Phys. Rev.D 68 (2003) 125001 [hep-th/0307276] [INSPIRE].
  13. [13]
    G.R. Dvali, G. Gabadadze and M.A. Shifman, (Quasi)localized gauge field on a brane: Dissipating cosmic radiation to extra dimensions?, Phys. Lett.B 497 (2001) 271 [hep-th/0010071] [INSPIRE].
  14. [14]
    A. Kehagias and K. Tamvakis, Localized gravitons, gauge bosons and chiral fermions in smooth spaces generated by a bounce, Phys. Lett.B 504 (2001) 38 [hep-th/0010112] [INSPIRE].
  15. [15]
    S.L. Dubovsky and V.A. Rubakov, On models of gauge field localization on a brane, Int. J. Mod. Phys.A 16 (2001) 4331 [hep-th/0105243] [INSPIRE].
  16. [16]
    K. Ghoroku and A. Nakamura, Massive vector trapping as a gauge boson on a brane, Phys. Rev.D 65 (2002) 084017 [hep-th/0106145] [INSPIRE].
  17. [17]
    E.K. Akhmedov, Dynamical localization of gauge fields on a brane, Phys. Lett.B 521 (2001) 79 [hep-th/0107223] [INSPIRE].
  18. [18]
    I.I. Kogan, S. Mouslopoulos, A. Papazoglou and G.G. Ross, Multilocalization in multibrane worlds, Nucl. Phys.B 615 (2001) 191 [hep-ph/0107307] [INSPIRE].
  19. [19]
    H. Abe, T. Kobayashi, N. Maru and K. Yoshioka, Field localization in warped gauge theories, Phys. Rev.D 67 (2003) 045019 [hep-ph/0205344] [INSPIRE].
  20. [20]
    M. Laine, H.B. Meyer, K. Rummukainen and M. Shaposhnikov, Localization and mass generation for nonAbelian gauge fields, JHEP01 (2003) 068 [hep-ph/0211149] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    N. Maru and N. Sakai, Localized gauge multiplet on a wall, Prog. Theor. Phys.111 (2004) 907 [hep-th/0305222] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    B. Batell and T. Gherghetta, Yang-Mills Localization in Warped Space, Phys. Rev.D 75 (2007) 025022 [hep-th/0611305] [INSPIRE].
  23. [23]
    R. Guerrero, A. Melfo, N. Pantoja and R.O. Rodriguez, Gauge field localization on brane worlds, Phys. Rev.D 81 (2010) 086004 [arXiv:0912.0463] [INSPIRE].
  24. [24]
    W.T. Cruz, M.O. Tahim and C.A.S. Almeida, Gauge field localization on a dilatonic deformed brane, Phys. Lett.B 686 (2010) 259 [INSPIRE].
  25. [25]
    A.E.R. Chumbes, J.M. Hoff da Silva and M.B. Hott, A model to localize gauge and tensor fields on thick branes, Phys. Rev.D 85 (2012) 085003 [arXiv:1108.3821] [INSPIRE].
  26. [26]
    C. Germani, Spontaneous localization on a brane via a gravitational mechanism, Phys. Rev.D 85 (2012) 055025 [arXiv:1109.3718] [INSPIRE].
  27. [27]
    T. Delsate and N. Sawado, Localizing modes of massive fermions and a U(1) gauge field in the inflating baby-skyrmion branes, Phys. Rev.D 85 (2012) 065025 [arXiv:1112.2714] [INSPIRE].
  28. [28]
    W.T. Cruz, A.R.P. Lima and C.A.S. Almeida, Gauge field localization on the Bloch Brane, Phys. Rev.D 87 (2013) 045018 [arXiv:1211.7355] [INSPIRE].
  29. [29]
    A. Herrera-Aguilar, A.D. Rojas and E. Santos-Rodriguez, Localization of gauge fields in a tachyonic de Sitter thick braneworld, Eur. Phys. J.C 74 (2014) 2770 [arXiv:1401.0999] [INSPIRE].
  30. [30]
    Z.-H. Zhao, Y.-X. Liu and Y. Zhong, U(1) gauge field localization on a Bloch brane with Chumbes-Holf da Silva-Hott mechanism, Phys. Rev.D 90 (2014) 045031 [arXiv:1402.6480] [INSPIRE].
  31. [31]
    C.A. Vaquera-Araujo and O. Corradini, Localization of abelian gauge fields on thick branes, Eur. Phys. J.C 75 (2015) 48 [arXiv:1406.2892] [INSPIRE].
  32. [32]
    G. Alencar, R.R. Landim, M.O. Tahim and R.N. Costa Filho, Gauge Field Localization on the Brane Through Geometrical Coupling, Phys. Lett.B 739 (2014) 125 [arXiv:1409.4396] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    G. Alencar, R.R. Landim, C.R. Muniz and R.N. Costa Filho, Nonminimal couplings in Randall-Sundrum scenarios, Phys. Rev.D 92 (2015) 066006 [arXiv:1502.02998] [INSPIRE].
  34. [34]
    G. Alencar, I.C. Jardim, R.R. Landim, C.R. Muniz and R.N. Costa Filho, Generalized nonminimal couplings in Randall-Sundrum scenarios, Phys. Rev.D 93 (2016) 124064 [arXiv:1506.00622] [INSPIRE].
  35. [35]
    G. Alencar, C.R. Muniz, R.R. Landim, I.C. Jardim and R.N. Costa Filho, Photon mass as a probe to extra dimensions, Phys. Lett.B 759 (2016) 138 [arXiv:1511.03608] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    G. Alencar, Hidden conformal symmetry in Randall-Sundrum 2 model: Universal fermion localization by torsion, Phys. Lett.B 773 (2017) 601 [arXiv:1705.09331] [INSPIRE].
  37. [37]
    K. Ohta and N. Sakai, Non-Abelian Gauge Field Localized on Walls with Four-Dimensional World Volume, Prog. Theor. Phys.124 (2010) 71 [Erratum ibid.127 (2012) 1133] [arXiv:1004.4078] [INSPIRE].
  38. [38]
    M.A. Luty and N. Okada, Almost no scale supergravity, JHEP04 (2003) 050 [hep-th/0209178] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    G.R. Dvali and M.A. Shifman, Domain walls in strongly coupled theories, Phys. Lett.B 396 (1997) 64 [Erratum ibid.B 407 (1997) 452] [hep-th/9612128] [INSPIRE].
  40. [40]
    J.B. Kogut and L. Susskind, Vacuum Polarization and the Absence of Free Quarks in Four-Dimensions, Phys. Rev.D 9 (1974) 3501 [INSPIRE].
  41. [41]
    R. Fukuda, String-Like Phase in Yang-Mills Theory, Phys. Lett.73B (1978) 305 [Erratum ibid.B 74 (1978) 433] [INSPIRE].
  42. [42]
    R. Fukuda, Stability of the vacuum and dielectric model of confinement in QCD, Mod. Phys. Lett.A 24 (2009) 251 [INSPIRE].
  43. [43]
    R. Fukuda, Derivation of Dielectric Model of Confinement in QCD, arXiv:0805.3864 [INSPIRE].
  44. [44]
    M. Arai, F. Blaschke, M. Eto and N. Sakai, Matter Fields and Non-Abelian Gauge Fields Localized on Walls, PTEP2013 (2013) 013B05 [arXiv:1208.6219] [INSPIRE].Google Scholar
  45. [45]
    M. Arai, F. Blaschke, M. Eto and N. Sakai, Stabilizing matter and gauge fields localized on walls, PTEP2013 (2013) 093B01 [arXiv:1303.5212] [INSPIRE].Google Scholar
  46. [46]
    M. Arai, F. Blaschke, M. Eto and N. Sakai, Dynamics of slender monopoles and anti-monopoles in non-Abelian superconductor, JHEP09 (2014) 172 [arXiv:1407.2332] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Arai, F. Blaschke, M. Eto and N. Sakai, Low energy dynamics of slender monopoles in non-Abelian superconductor, J. Phys. Conf. Ser.670 (2016) 012006 [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    M. Arai, F. Blaschke, M. Eto and N. Sakai, Non-Abelian Gauge Field Localization on Walls and Geometric Higgs Mechanism, PTEP2017 (2017) 053B01 [arXiv:1703.00427] [INSPIRE].Google Scholar
  49. [49]
    M. Arai, F. Blaschke, M. Eto and N. Sakai, Grand Unified Brane World Scenario, Phys. Rev.D 96 (2017) 115033 [arXiv:1703.00351] [INSPIRE].
  50. [50]
    M. Arai, F. Blaschke, M. Eto and N. Sakai, Localized non-Abelian gauge fields in non-compact extra-dimensions, PTEP2018 (2018) 063B02 [arXiv:1801.02498] [INSPIRE].Google Scholar
  51. [51]
    M. Arai, F. Blaschke, M. Eto and N. Sakai, Localization of the Standard Model via the Higgs mechanism and a finite electroweak monopole from non-compact five dimensions, PTEP2018 (2018) 083B04 [arXiv:1802.06649] [INSPIRE].Google Scholar
  52. [52]
    M. Arai, F. Blaschke, M. Eto and N. Sakai, Massless bosons on domain walls: Jackiw-Rebbi-like mechanism for bosonic fields, arXiv:1811.08708 [INSPIRE].
  53. [53]
    N. Okada, D. Raut and D. Villalba, Domain-Wall Standard Model in non-compact 5D and LHC phenomenology, Mod. Phys. Lett.A 34 (2019) 1950080 [arXiv:1712.09323] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    N. Okada, D. Raut and D. Villalba, Aspects of Domain-Wall Standard Model, arXiv:1801.03007 [INSPIRE].
  55. [55]
    N. Okada, D. Raut and D. Villalba, Fermion Mass Hierarchy and Phenomenology in the 5D Domain Wall Standard Model, arXiv:1904.10308 [INSPIRE].
  56. [56]
    J.P. Gauntlett, D. Tong and P.K. Townsend, Supersymmetric intersecting domain walls in massive hyperKähler σ-models, Phys. Rev.D 63 (2001) 085001 [hep-th/0007124] [INSPIRE].
  57. [57]
    J.P. Gauntlett, D. Tong and P.K. Townsend, Multidomain walls in massive supersymmetric σ-models, Phys. Rev.D 64 (2001) 025010 [hep-th/0012178] [INSPIRE].
  58. [58]
    M. Eto, Y. Isozumi, M. Nitta and K. Ohashi, 1/2, 1/4 and 1/8 BPS equations in SUSY Yang-Mills-Higgs systems: Field theoretical brane configurations, Nucl. Phys.B 752 (2006) 140 [hep-th/0506257] [INSPIRE].
  59. [59]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: The moduli matrix approach, J. Phys.A 39 (2006) R315 [hep-th/0602170] [INSPIRE].
  60. [60]
    D. Tong, The moduli space of BPS domain walls, Phys. Rev.D 66 (2002) 025013 [hep-th/0202012] [INSPIRE].
  61. [61]
    M. Shifman and A. Yung, Domain walls and flux tubes in N = 2 SQCD: D-brane prototypes, Phys. Rev.D 67 (2003) 125007 [hep-th/0212293] [INSPIRE].
  62. [62]
    M. Shifman and A. Yung, Localization of nonAbelian gauge fields on domain walls at weak coupling (D-brane prototypes II), Phys. Rev.D 70 (2004) 025013 [hep-th/0312257] [INSPIRE].
  63. [63]
    Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Construction of non-Abelian walls and their complete moduli space, Phys. Rev. Lett.93 (2004) 161601 [hep-th/0404198] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, All exact solutions of a 1/4 Bogomol’nyi-Prasad-Sommerfield equation, Phys. Rev.D 71 (2005) 065018 [hep-th/0405129] [INSPIRE].
  65. [65]
    Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Non-Abelian walls in supersymmetric gauge theories, Phys. Rev.D 70 (2004) 125014 [hep-th/0405194] [INSPIRE].
  66. [66]
    M. Eto, Y. Isozumi, M. Nitta, K. Ohashi, K. Ohta and N. Sakai, D-brane construction for non-Abelian walls, Phys. Rev.D 71 (2005) 125006 [hep-th/0412024] [INSPIRE].
  67. [67]
    D. Tong, TASI lectures on solitons: Instantons, monopoles, vortices and kinks, in Theoretical Advanced Study Institute in Elementary Particle Physics: Many Dimensions of String Theory (TASI 2005) Boulder, Colorado, June 5 – July 1, 2005, hep-th/0509216 [INSPIRE].
  68. [68]
    M. Shifman and A. Yung, Supersymmetric Solitons and How They Help Us Understand Non-Abelian Gauge Theories, Rev. Mod. Phys.79 (2007) 1139 [hep-th/0703267] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    T. Higaki, N. Kitazawa, T. Kobayashi and K.-j. Takahashi, Flavor structure and coupling selection rule from intersecting D-branes, Phys. Rev.D 72 (2005) 086003 [hep-th/0504019] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsYamagata UniversityYamagataJapan
  2. 2.Research and Education Center for Natural SciencesKeio UniversityYokohamaJapan

Personalised recommendations