Advertisement

Search for the Electric Dipole Moment and anomalous magnetic moment of the tau lepton at tau factories

  • Xin Chen
  • Yongcheng WuEmail author
Open Access
Regular Article - Experimental Physics

Abstract

Precise measurement of the Electric Dipole Moment (EDM) and anomalous magnetic moment (g-2) of particles are important tests of Beyond Standard Model (BSM) physics. It is generally believed that the tau lepton couples more strongly to BSM due to its large mass, and can be searched for at collider experiments. A new method to ap- proximately reconstruct the neutrinos from the hadronic decays of ττ+ pairs produced at ee+ tau factories is proposed. With all final state particle momenta available, observables based on matrix elements and sensitive to BSM are calculated. It is estimated that with 50 ab−1 of data to be delivered by the Belle-II experiment, a tau EDM search with a 1-σ level precision of \( \left|{d}_{\tau}^{NP}\right|<2.04\times {10}^{-19}\ 10 \) e·cm, and g-2 search with \( \left|{\alpha}_{\tau}^{NP}\right|<1.75\times {10}^{-5} \) (1.5% of the SM prediction), can be expected when systematics are not considered. The new precision can effectively constrain BSM models with heavy mirror neutrinos. It can also constrain models containing a light scalar with mass at O(1 GeV), which can explain the current muon g-2 anomaly as well. The method in this work offers a new opportunity to search for BSM at current and future tau factories with high precision.

Keywords

Beyond Standard Model e+-e- Experiments Tau Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S.-M. Zhao, T.-F. Feng, X.-J. Zhan, H.-B. Zhang and B. Yan, The study of lepton EDM in CP-violating BLMSSM, JHEP07 (2015) 124 [arXiv:1411.4210] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N. Yamanaka, T. Sato and T. Kubota, Linear programming analysis of the R-parity violation within EDM-constraints, JHEP12 (2014) 110 [arXiv:1406.3713] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Appelquist, M. Piai and R. Shrock, Lepton dipole moments in extended technicolor models, Phys. Lett.B 593 (2004) 175 [hep-ph/0401114] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Ibrahim and P. Nath, An MSSM Extension with a Mirror Fourth Generation, Neutrino Magnetic Moments and LHC Signatures, Phys. Rev.D 78 (2008) 075013 [arXiv:0806.3880] [INSPIRE].ADSGoogle Scholar
  5. [5]
    T. Ibrahim and P. Nath, Large Tau and Tau Neutrino Electric Dipole Moments in Models with Vector Like Multiplets, Phys. Rev.D 81 (2010) 033007 [Erratum ibid.D 89 (2014) 119902] [arXiv:1001.0231] [INSPIRE].
  6. [6]
    A. Ilakovac, A. Pilaftsis and L. Popov, Lepton Dipole Moments in Supersymmetric Low-Scale Seesaw Models, Phys. Rev.D 89 (2014) 015001 [arXiv:1308.3633] [INSPIRE].
  7. [7]
    S. Eidelman, D. Epifanov, M. Fael, L. Mercolli and M. Passera, τ dipole moments via radiative leptonic τ decays, JHEP03 (2016) 140 [arXiv:1601.07987] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    ACME collaboration, Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
  9. [9]
    ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature562 (2018) 355 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Muon g − 2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev.D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].Google Scholar
  11. [11]
    J.P. Miller, E. de Rafael and B.L. Roberts, Muon (g − 2): Experiment and theory, Rept. Prog. Phys.70 (2007) 795 [hep-ph/0703049] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    T. Blum et al., The Muon (g − 2) Theory Value: Present and Future, arXiv:1311.2198 [INSPIRE].
  13. [13]
    Muon g − 2 collaboration, Muon (g − 2) Technical Design Report, arXiv:1501.06858 [INSPIRE].
  14. [14]
    Muon g − 2 collaboration, The Muon g − 2 experiment at Fermilab, EPJ Web Conf.137 (2017) 08001 [arXiv:1701.02807] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    M. Abe et al., A New Approach for Measuring the Muon Anomalous Magnetic Moment and Electric Dipole Moment, Prog. Theor. Exp. Phys.2019 (2019) 053C02 [arXiv:1901.03047] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    Belle collaboration, Search for the electric dipole moment of the tau lepton, Phys. Lett.B 551 (2003) 16 [hep-ex/0210066] [INSPIRE].ADSGoogle Scholar
  17. [17]
    DELPHI collaboration, Study of tau-pair production in photon-photon collisions at LEP and limits on the anomalous electromagnetic moments of the tau lepton, Eur. Phys. J.C 35 (2004) 159 [hep-ex/0406010] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    B. Ananthanarayan and S.D. Rindani, Measurement of the tau electric dipole moment using longitudinal polarization of e +e beams, Phys. Rev.D 51 (1995) 5996 [hep-ph/9411399] [INSPIRE].ADSGoogle Scholar
  19. [19]
    B. Ananthanarayan, S.D. Rindani and A. Stahl, CP violation in the production of τ leptons at TESLA with beam polarization, Eur. Phys. J.C 27 (2003) 33 [hep-ph/0204233] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Bernabeu, G.A. Gonzalez-Sprinberg and J. Vidal, CP violation and electric-dipole-moment at low energy tau-pair production, Nucl. Phys.B 701 (2004) 87 [hep-ph/0404185] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Bernabeu, G.A. Gonzalez-Sprinberg and J. Vidal, CP violation and electric-dipole-moment at low energy tau production with polarized electrons, Nucl. Phys.B 763 (2007) 283 [hep-ph/0610135] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  22. [22]
    J. Bernabeu, G.A. Gonzalez-Sprinberg, J. Papavassiliou and J. Vidal, Tau anomalous magnetic moment form-factor at super B/flavor factories, Nucl. Phys.B 790 (2008) 160 [arXiv:0707.2496] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J. Bernabeu, G.A. Gonzalez-Sprinberg and J. Vidal, Tau spin correlations and the anomalous magnetic moment, JHEP01 (2009) 062 [arXiv:0807.2366] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Atag and A.A. Billur, Possibility of Determining τ Lepton Electromagnetic Moments in γγ → τ +τ Process at the CERN-LHC, JHEP11 (2010) 060 [arXiv:1005.2841] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A.A. Billur and M. Koksal, Probe of the electromagnetic moments of the tau lepton in gamma-gamma collisions at the CLIC, Phys. Rev.D 89 (2014) 037301 [arXiv:1306.5620] [INSPIRE].
  26. [26]
    Y. Özgüven, S.C. İnan, A.A. Billur, M. Köksal and M.K. Bahar, Search for the anomalous electromagnetic moments of tau lepton through electron-photon scattering at CLIC, Nucl. Phys.B 923 (2017) 475 [arXiv:1609.08348] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Köksal, S.C. İnan, A.A. Billur, Y. Özgüven and M.K. Bahar, Analysis of the anomalous electromagnetic moments of the tau lepton in γp collisions at the LHC, Phys. Lett.B 783 (2018) 375 arXiv:1711.02405 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].Google Scholar
  29. [29]
    S. Eidelman and M. Passera, Theory of the tau lepton anomalous magnetic moment, Mod. Phys. Lett.A 22 (2007) 159 [hep-ph/0701260] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  30. [30]
    Belle-II collaboration, Belle II Technical Design Report, arXiv:1011.0352 [INSPIRE].
  31. [31]
    S. Jadach, J.H. Kuhn and Z. Was, TAUOLA: A Library of Monte Carlo programs to simulate decays of polarized tau leptons, Comput. Phys. Commun.64 (1990) 275 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Y.-S. Tsai, Decay Correlations of Heavy Leptons in e +e  →  + +  , Phys. Rev.D 4 (1971) 2821 [Erratum ibid.D 13 (1976) 771] [INSPIRE].
  33. [33]
    X. Chen and Y. Wu, Search for CP-violation effects in the h → τ τ decay with e +e colliders, Eur. Phys. J.C 77 (2017) 697 [arXiv:1703.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    X. Chen and Y. Wu, Probing the CP-Violation effects in the hτ τ coupling at the LHC, Phys. Lett.B 790 (2019) 332 [arXiv:1708.02882] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    B. Golob, The start of the Belle II experiment at the SuperKEKB e +e factory, in proceedings of the 3rd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics, Krakow, Polland, 23–28 June 2019 and online pdf version at https://docs.belle2.org/record/1569/files/BELLE2-TALK-CONF-2019-085.pdf.
  36. [36]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  38. [38]
    K. Hagiwara, T. Li, K. Mawatari and J. Nakamura, TauDecay: a library to simulate polarized tau decays via FeynRules and MadGraph5, Eur. Phys. J.C 73 (2013) 2489 [arXiv:1212.6247] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth.A 462 (2001) 152 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].ADSGoogle Scholar
  41. [41]
    BABAR collaboration, The BABAR physics book: Physics at an asymmetric B factory, SLAC-R-0504 (1998) [INSPIRE].
  42. [42]
    E. Farhi, A QCD Test for Jets, Phys. Rev. Lett.39 (1977) 1587 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.H. Kuhn, Tau kinematics from impact parameters, Phys. Lett.B 313 (1993) 458 [hep-ph/9307269] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    F. James and M. Roos, Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations, Comput. Phys. Commun.10 (1975) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Jadach and Z. Was, QED O(α 3 ) Radiative Corrections to the Reaction e +e → τ +τ Including Spin and Mass Effects, Acta Phys. Polon.B 15 (1984) 1151 [Erratum ibid.B 16 (1985) 483] [INSPIRE].
  46. [46]
    D. Atwood and A. Soni, Analysis for magnetic moment and electric dipole moment form-factors of the top quark via e +e → t t ̄, Phys. Rev.D 45 (1992) 2405 [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Diehl and O. Nachtmann, Optimal observables for the measurement of three gauge boson couplings in e +e → W +W , Z. Phys.C 62 (1994) 397 [INSPIRE].ADSGoogle Scholar
  48. [48]
    W. Bernreuther, O. Nachtmann and P. Overmann, The CP-violating electric and weak dipole moments of the tau lepton from threshold to 500-GeV, Phys. Rev.D 48 (1993) 78 [INSPIRE].ADSGoogle Scholar
  49. [49]
    K. Fujikawa, B.W. Lee and A.I. Sanda, Generalized Renormalizable Gauge Formulation of Spontaneously Broken Gauge Theories, Phys. Rev.D 6 (1972) 2923 [INSPIRE].ADSGoogle Scholar
  50. [50]
    V. Keus, N. Koivunen and K. Tuominen, Singlet scalar and 2HDM extensions of the Standard Model: CP-violation and constraints from (g − 2)μand eEDM, JHEP09 (2018) 059 [arXiv:1712.09613] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    W. Altmannshofer, J. Brod and M. Schmaltz, Experimental constraints on the coupling of the Higgs boson to electrons, JHEP05 (2015) 125 [arXiv:1503.04830] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies, Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J.C 66 (2010) 585 [arXiv:0912.0749] [INSPIRE].Google Scholar
  53. [53]
    O. Shekhovtsova, T. Przedzinski, P. Roig and Z. Was, Resonance chiral Lagrangian currents and τ decay Monte Carlo, Phys. Rev.D 86 (2012) 113008 [arXiv:1203.3955] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsTsinghua UniversityBeijingChina
  2. 2.Collaborative Innovation Center of Quantum MatterBeijingChina
  3. 3.Center for High Energy PhysicsPeking UniversityBeijingChina
  4. 4.Ottawa-Carleton Institute for PhysicsCarleton UniversityOttawaCanada

Personalised recommendations