Advertisement

One-loop holography with strings in AdS4 × ℂℙ3

  • Marina David
  • Rodrigo de León Ardón
  • Alberto FaraggiEmail author
  • Leopoldo A. Pando Zayas
  • Guillermo A. Silva
Open Access
Regular Article - Theoretical Physics
  • 26 Downloads

Abstract

We compute the one-loop effective action of string configurations embedded in AdS4 × ℂℙ3 which are dual to \( \frac{1}{6} \)-BPS latitude Wilson Loops in the ABJM theory. To avoid ambiguities in the string path integral we subtract the \( \frac{1}{2} \)-BPS case. The one-loop determinants are computed by Fourier-decomposing the two dimensional operators and then using the Gel’fand-Yaglom method. We comment on various aspects related to the regularization procedure, showing the cancellation of a hierarchy of divergences. After taking into account an IR anomaly from a change in topology, we find a precise agreement with the field theory result known from supersymmetric localization.

Keywords

AdS-CFT Correspondence Wilson ’t Hooft and Polyakov loops Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS 5 × S 5: Semiclassical partition function, JHEP04 (2000) 021 [hep-th/0001204] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Kruczenski and A. Tirziu, Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling, JHEP05 (2008) 064 [arXiv:0803.0315] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    V. Forini, V. Giangreco M. Puletti, L. Griguolo, D. Seminara and E. Vescovi, Precision calculation of 1/4-BPS Wilson loops in AdS 5 × S 5 , JHEP02 (2016) 105 [arXiv:1512.00841] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Faraggi, L.A. Pando Zayas, G.A. Silva and D. Trancanelli, Toward precision holography with supersymmetric Wilson loops, JHEP04 (2016) 053 [arXiv:1601.04708] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  6. [6]
    J. Aguilera-Damia, A. Faraggi, L.A. Pando Zayas, V. Rathee and G.A. Silva, Zeta-function Regularization of Holographic Wilson Loops, Phys. Rev.D 98 (2018) 046011 [arXiv:1802.03016] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    A. Cagnazzo, D. Medina-Rincon and K. Zarembo, String corrections to circular Wilson loop and anomalies, JHEP02 (2018) 120 [arXiv:1712.07730] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    D. Medina-Rincon, A.A. Tseytlin and K. Zarembo, Precision matching of circular Wilson loops and strings in AdS 5× S 5 , JHEP05 (2018) 199 [arXiv:1804.08925] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Klemm, M. Mariño, M. Schiereck and M. Soroush, Aharony-Bergman-Jafferis-Maldacena Wilson loops in the Fermi gas approach, Z. Naturforsch.A 68 (2013) 178 [arXiv:1207.0611] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K. Okuyama, Instanton Corrections of 1/6 BPS Wilson Loops in ABJM Theory, JHEP09 (2016) 125 [arXiv:1607.06157] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    M.S. Bianchi, L. Griguolo, A. Mauri, S. Penati and D. Seminara, A matrix model for the latitude Wilson loop in ABJM theory, JHEP08 (2018) 060 [arXiv:1802.07742] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  13. [13]
    J. Aguilera-Damia, A. Faraggi, L.A. Pando Zayas, V. Rathee and G.A. Silva, Toward Precision Holography in Type IIA with Wilson Loops, JHEP08 (2018) 044 [arXiv:1805.00859] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    J. Aguilera-Damia, A. Faraggi, L. Pando Zayas, V. Rathee and G.A. Silva, Functional Determinants of Radial Operators in AdS 2, JHEP06 (2018) 007 [arXiv:1802.06789] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    D. Medina-Rincon, Matching quantum string corrections and circular Wilson loops in AdS 4 × CP 3, JHEP08 (2019) 158 [arXiv:1907.02984] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    V. Cardinali, L. Griguolo, G. Martelloni and D. Seminara, New supersymmetric Wilson loops in ABJ(M) theories, Phys. Lett.B 718 (2012) 615 [arXiv:1209.4032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    M.S. Bianchi, L. Griguolo, M. Leoni, S. Penati and D. Seminara, BPS Wilson loops and Bremsstrahlung function in ABJ(M): a two loop analysis, JHEP06 (2014) 123 [arXiv:1402.4128] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Bonini, L. Griguolo, M. Preti and D. Seminara, Surprises from the resummation of ladders in the ABJ(M) cusp anomalous dimension, JHEP05 (2016) 180 [arXiv:1603.00541] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M.S. Bianchi, L. Griguolo, A. Mauri, S. Penati, M. Preti and D. Seminara, Towards the exact Bremsstrahlung function of ABJM theory, JHEP08 (2017) 022 [arXiv:1705.10780] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    L. Bianchi, L. Griguolo, M. Preti and D. Seminara, Wilson lines as superconformal defects in ABJM theory: a formula for the emitted radiation, JHEP10 (2017) 050 [arXiv:1706.06590] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    L. Bianchi, M. Preti and E. Vescovi, Exact Bremsstrahlung functions in ABJM theory, JHEP07 (2018) 060 [arXiv:1802.07726] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    D.H. Correa, J. Aguilera-Damia and G.A. Silva, Strings in AdS 4 × ℂℙ3Wilson loops in \( \mathcal{N} \)=6 super Chern-Simons-matter and bremsstrahlung functions, JHEP06 (2014) 139 [arXiv:1405.1396] [INSPIRE].ADSzbMATHGoogle Scholar
  23. [23]
    I.M. Gelfand and A.M. Yaglom, Integration in functional spaces and it applications in quantum physics, J. Math. Phys.1 (1960) 48 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    R. Forman, Functional determinants and geometry, Invent. Math.88 (1987) 447.ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    C. Kristjansen and Y. Makeenko, More about One-Loop Effective Action of Open Superstring in AdS 5 × S 5, JHEP09 (2012) 053 [arXiv:1206.5660] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Bergamin and A.A. Tseytlin, Heat kernels on cone of AdS 2and k-wound circular Wilson loop in AdS 5 × S 5superstring, J. Phys.A 49 (2016) 14LT01 [arXiv:1510.06894] [INSPIRE].zbMATHGoogle Scholar
  27. [27]
    V. Forini, A.A. Tseytlin and E. Vescovi, Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in AdS 5 × S 5 , JHEP03 (2017) 003 [arXiv:1702.02164] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E.I. Buchbinder and A.A. Tseytlin, 1/N correction in the D3-brane description of a circular Wilson loop at strong coupling, Phys. Rev.D 89 (2014) 126008 [arXiv:1404.4952] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Faraggi and L.A. Pando Zayas, The Spectrum of Excitations of Holographic Wilson Loops, JHEP05 (2011) 018 [arXiv:1101.5145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A. Faraggi, W. Mueck and L.A. Pando Zayas, One-loop Effective Action of the Holographic Antisymmetric Wilson Loop, Phys. Rev.D 85 (2012) 106015 [arXiv:1112.5028] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Faraggi, J.T. Liu, L.A. Pando Zayas and G. Zhang, One-loop structure of higher rank Wilson loops in AdS/CFT, Phys. Lett.B 740 (2015) 218 [arXiv:1409.3187] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Leinweber Center for Theoretical Physics, Randall Laboratory of PhysicsThe University of MichiganAnn ArborU.S.A.
  2. 2.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  3. 3.Departamento de Ciencias Físicas, Facultad de Ciencias ExactasUniversidad Andrés BelloSantiagoChile
  4. 4.Instituto de Física de La Plata — CONICET & Departamento de Física, UNLPLa PlataArgentina

Personalised recommendations