Longitudinal sound and diffusion in holographic massive gravity
- 23 Downloads
Abstract
We consider a simple class of holographic massive gravity models for which the dual field theories break translational invariance spontaneously. We study, in detail, the longitudinal sector of the quasi-normal modes at zero charge density. We identify three hydrodynamic modes in this sector: a pair of sound modes and one diffusion mode. We numerically compute the dispersion relations of the hydrodynamic modes. The obtained speed and the attenuation of the sound modes are in agreement with the hydrodynamic predictions. On the contrary, we surprisingly find disagreement in the case of the diffusive mode; its diffusion constant extracted from the quasi-normal mode data does not agree with the expectations from hydrodynamics. We confirm our numerical results using ana- lytic tools in the decoupling limit and we comment on some possible reasons behind the disagreement. Finally, we extend the analysis of the collective longitudinal modes beyond the hydrodynamic limit by displaying the dynamics of the higher quasi-normal modes at large frequencies and momenta.
Keywords
Holography and condensed matter physics (AdS/CMT) Space-Time Sym- metries AdS-CFT CorrespondenceNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
References
- [1]D. Forster, Hydrodynamic fluctuations, broken symmetry, and correlation functions, CRC Press, Boca Raton, U.S.A. (1975).Google Scholar
- [2]A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: framids, ordinary stuff, extra-ordinary stuff, JHEP06 (2015) 155 [arXiv:1501.03845] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [3]A. Zippelius, B.I. Halperin and D.R. Nelson, Dynamics of two-dimensional melting, Phys. Rev.B 22 (1980) 2514.ADSCrossRefGoogle Scholar
- [4]P.C. Martin, O. Parodi and P.S. Pershan, Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids, Phys. Rev.A 6 (1972) 2401.ADSCrossRefGoogle Scholar
- [5]S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
- [6]M. Ammon and J. Erdmenger, Gauge/gravity duality, Cambridge University Press, Cambridge U.K.. (2015).CrossRefGoogle Scholar
- [7]J. Zaanen, Y. Liu, Y. Sun and K. Schalm, Holographic duality in condensed matter physics, Cambridge University Press, Cambridge U.K.. (2015).CrossRefGoogle Scholar
- [8]G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP09 (2002) 043 [hep-th/0205052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [9]G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. 2. Sound waves, JHEP12 (2002) 054 [hep-th/0210220] [INSPIRE].
- [10]H. Leutwyler, Phonons as goldstone bosons, Helv. Phys. Acta70 (1997) 275 [hep-ph/9609466] [INSPIRE].
- [11]P.M. Chaikin and T.C. Lubensky, Principles of condensed matter physics, Cambridge University Press, Cambridge U.K. (1995).CrossRefGoogle Scholar
- [12]L.D. Landau and E.M. Lifshitz, Course of theoretical physics. Vol. 7: Theory of elasticity, Pergamon Press, U.K. (1970).Google Scholar
- [13]F.H. MacDougall, Kinetic theory of liquids. by J. Frenkel, J. Phys. Colloid CHem.51 (1947) 1032].Google Scholar
- [14]L. Noirez and P. Baroni, Identification of a low-frequency elastic behaviour in liquid water, J. Phys. Cond. Mat.24 (2012) 372101.CrossRefGoogle Scholar
- [15]C. Yang, M.T. Dove, V.V. Brazhkin and K. Trachenko, Emergence and evolution of the k gap in spectra of liquid and supercritical states, Phys. Rev. Lett.118 (2017) 215502.ADSCrossRefGoogle Scholar
- [16]K. Trachenko and V.V. Brazhkin, Collective modes and thermodynamics of the liquid state, Rept. Prog. Phys.79 (2016) 016502 [arXiv:1512.06592].ADSMathSciNetCrossRefGoogle Scholar
- [17]M. Baggioli and K. Trachenko, Low frequency propagating shear waves in holographic liquids, JHEP03 (2019) 093 [arXiv:1807.10530] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [18]M. Baggioli and K. Trachenko, Maxwell interpolation and close similarities between liquids and holographic models, Phys. Rev.D 99 (2019) 106002 [arXiv:1808.05391] [INSPIRE].ADSMathSciNetGoogle Scholar
- [19]P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys.A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [20]L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Theory of hydrodynamic transport in fluctuating electronic charge density wave states, Phys. Rev.B 96 (2017) 195128 [arXiv:1702.05104] [INSPIRE].
- [21]R.A. Davison, L.V. Delacŕetaz, B. Goutéraux and S.A. Hartnoll, Hydrodynamic theory of quantum fluctuating superconductivity, Phys. Rev.B 94 (2016) 054502 [Erratum ibid.B 96 (2017) 059902] [arXiv:1602.08171] [INSPIRE].
- [22]L. Alberte et al., Holographic phonons, Phys. Rev. Lett.120 (2018) 171602 [arXiv:1711.03100] [INSPIRE].ADSCrossRefGoogle Scholar
- [23]M. Baggioli and O. Pujolàs, Electron-phonon interactions, metal-insulator transitions and holographic massive gravity, Phys. Rev. Lett.114 (2015) 251602 [arXiv:1411.1003] [INSPIRE].
- [24]L. Alberte, M. Baggioli, A. Khmelnitsky and O. Pujolàs, Solid holography and massive gravity, JHEP02 (2016) 114 [arXiv:1510.09089] [INSPIRE].
- [25]T. Andrade, M. Baggioli, A. Krikun and N. Poovuttikul, Pinning of longitudinal phonons in holographic spontaneous helices, JHEP02 (2018) 085 [arXiv:1708.08306] [INSPIRE].ADSCrossRefGoogle Scholar
- [26]M. Baggioli et al., Holographic plasmon relaxation with and without broken translations, JHEP09 (2019) 013 [arXiv:1905.00804] [INSPIRE].ADSCrossRefGoogle Scholar
- [27]M. Baggioli and S. Grieninger, Zoology of solid & fluid holography: Goldstone modes and phase relaxation, arXiv:1905.09488 [INSPIRE].
- [28]A. Donos, D. Martin, C. Pantelidou and V. Ziogas, Incoherent hydrodynamics and density waves, arXiv:1906.03132 [INSPIRE].
- [29]A. Donos, D. Martin, C. Pantelidou and V. Ziogas, Hydrodynamics of broken global symmetries in the bulk, arXiv:1905.00398 [INSPIRE].
- [30]M. Baggioli and D.K. Brattan, Drag phenomena from holographic massive gravity, Class. Quant. Grav.34 (2017) 015008 [arXiv:1504.07635] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [31]M. Baggioli and M. Goykhman, Phases of holographic superconductors with broken translational symmetry, JHEP07 (2015) 035 [arXiv:1504.05561] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [32]M. Baggioli and M. Goykhman, Under the dome: doped holographic superconductors with broken translational symmetry, JHEP01 (2016) 011 [arXiv:1510.06363] [INSPIRE].ADSCrossRefGoogle Scholar
- [33]L. Alberte, M. Baggioli and O. Pujolàs, Viscosity bound violation in holographic solids and the viscoelastic response, JHEP07 (2016) 074 [arXiv:1601.03384] [INSPIRE].
- [34]L. Alberte et al., Black hole elasticity and gapped transverse phonons in holography, JHEP01 (2018) 129 [arXiv:1708.08477] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [35]M. Ammon, M. Baggioli and A. Jiḿenez-Alba, A unified description of translational symmetry breaking in holography, arXiv:1904.05785 [INSPIRE].
- [36]M. Baggioli and A. Zaccone, Universal origin of boson peak vibrational anomalies in ordered crystals and in amorphous materials, Phys. Rev. Lett.122 (2019) 145501 [arXiv:1810.09516] [INSPIRE].ADSCrossRefGoogle Scholar
- [37]K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav.19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [38]A. Amoretti, D. Areán, B. Gout́eraux and D. Musso, A holographic strange metal with slowly fluctuating translational order, arXiv:1812.08118 [INSPIRE].
- [39]A. Amoretti, D. Areán, B. Gout́eraux and D. Musso, Diffusion and universal relaxation of holographic phonons, arXiv:1904.11445 [INSPIRE].
- [40]M. Baggioli and A. Buchel, Holographic viscoelastic hydrodynamics, JHEP03 (2019) 146 [arXiv:1805.06756] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [41]M. Baggioli, V. Cancer-Castillo and O. Pujolas, to appear.Google Scholar
- [42]A. Esposito, S. Garcia-Saenz, A. Nicolis and R. Penco, Conformal solids and holography, JHEP12 (2017) 113 [arXiv:1708.09391] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [43]L. Alberte, M. Baggioli, V.C. Castillo and O. Pujolàs, Elasticity bounds from effective field theory, Phys. Rev.D 100 (2019) 065015 [arXiv:1807.07474] [INSPIRE].
- [44]R. Baier et al., Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP04 (2008) 100 [arXiv:0712.2451] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [45]K.K. Kim, M. Park and K.-Y. Kim, Ward identity and Homes’ law in a holographic superconductor with momentum relaxation, JHEP10 (2016) 041 [arXiv:1604.06205] [INSPIRE].ADSCrossRefGoogle Scholar
- [46]R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP01 (2015) 039 [arXiv:1411.1062] [INSPIRE].
- [47]S. Grozdanov and N. Poovuttikul, Generalized global symmetries in states with dynamical defects: the case of the transverse sound in field theory and holography, Phys. Rev.D 97 (2018) 106005 [arXiv:1801.03199] [INSPIRE].ADSMathSciNetGoogle Scholar
- [48]Y. Ishii et al., Glass-like features of crystalline solids in the quantum critical regime, arXiv:1901.09502.
- [49]C. Setty, Glass-induced enhancement of superconducting tc : pairing via dissipative mediators, Phys. Rev.B 99 (2019) 144523 [arXiv:1902.00516].ADSCrossRefGoogle Scholar
- [50]Y. He et al., Rapid change of superconductivity and electron-phonon coupling through critical doping in bi-2212, Science362 (2018) 62.ADSCrossRefGoogle Scholar
- [51]S. Grieninger, Holographic quenches and anomalous transport, arXiv:1711.08422.
- [52]M. Ammon et al., Holographic quenches and anomalous transport, JHEP09 (2016) 131 [arXiv:1607.06817] [INSPIRE].ADSCrossRefGoogle Scholar