Advertisement

Crossing, modular averages and N ↔ k in WZW models

  • Ratul Mahanta
  • Anshuman MaharanaEmail author
Open Access
Regular Article - Theoretical Physics
  • 28 Downloads

Abstract

We consider the construction of genus zero correlators of SU(N )k WZW models involving two Kac-Moody primaries in the fundamental and two in the anti-fundamental representation from modular averaging of the contribution of the vacuum conformal block. We perform the averaging by two prescriptions — averaging over the stabiliser group associated with the correlator and averaging over the entire modular group. For the first method, in cases where we find the orbit of the vacuum conformal block to be finite, modular averaging reproduces the exact result for the correlators. In other cases, we perform the modular averaging numerically, the results are in agreement with the exact answers. Construction of correlators from averaging over whole of the modular group is more involved. Here, we find some examples where modular averaging does not reproduce the correlator. We find a close relationship between the modular averaging sums of the theories related by level-rank duality. We establish a one to one correspondence between elements of the orbits of the vacuum conformal blocks of dual theories. The contributions of paired terms to their respective correlators are simply related. One consequence of this is that the ratio between the OPE coefficients associated with dual correlators can be obtained analytically without performing the sums involved in the modular averagings. The pairing of terms in the modular averaging sums for dual theories suggests an interesting connection between level-rank duality and semi-classical holographic computations of the correlators in the theories.

Keywords

Conformal and W Symmetry Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys.76 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [Sov. Phys. JETP39 (1974) 9] [INSPIRE].Google Scholar
  3. [3]
    D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques and applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    D. Simmons-Duffin, The conformal bootstrap, arXiv:1602.07982 [INSPIRE].
  5. [5]
    S. Rychkov, EPFL lectures on conformal field theory in D ≥ 3 dimensions, arXiv:1601.05000.
  6. [6]
    M.F. Paulos, JuliBootS: a hands-on guide to the conformal bootstrap, arXiv:1412.4127 [INSPIRE].
  7. [7]
    C. Beem, L. Rastelli, A. Sen and B.C. van Rees, Resummation and S-duality in N = 4 SYM, JHEP04 (2014) 122 [arXiv:1306.3228] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Jain et al., Unitarity, crossing symmetry and duality of the S-matrix in large N Chern-Simons theories with fundamental matter, JHEP04 (2015) 129 [arXiv:1404.6373] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  9. [9]
    A. Maloney, H. Maxfield and G.S. Ng, A conformal block Farey tail, JHEP06 (2017) 117 [arXiv:1609.02165] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    A. Castro et al., The gravity dual of the Ising model, Phys. Rev.D 85 (2012) 024032 [arXiv:1111.1987] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys.B 241 (1984) 333 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    V.G. Knizhnik and A.B. Zamolodchikov, Current algebra and Wess-Zumino model in two-dimensions, Nucl. Phys.B 247 (1984) 83 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    D. Gepner and E. Witten, String theory on group manifolds, Nucl. Phys.B 278 (1986) 493 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A. Cappelli, C. Itzykson and J.B. Zuber, Modular invariant partition functions in two-dimensions, Nucl. Phys.B 280 (1987) 445 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys.B 270 (1986) 186 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    E.P. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys.B 300 (1988) 360 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  17. [17]
    R. Dijkgraaf and E.P. Verlinde, Modular invariance and the fusion algebra, Nucl. Phys. Proc. Suppl.5 (1988) 87 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    G.W. Moore and N. Seiberg, Polynomial equations for rational conformal field theories, Phys. Lett.B 212 (1988) 451 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    G.W. Moore and N. Seiberg, Naturality in conformal field theory, Nucl. Phys.B 313 (1989) 16 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept.223 (1993) 183 [hep-th/9210010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    S. Hellerman, A universal inequality for CFT and quantum gravity, JHEP08 (2011) 130 [arXiv:0902.2790] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    S. Ribault and R. Santachiara, Liouville theory with a central charge less than one, JHEP08 (2015) 109 [arXiv:1503.02067] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    M. Picco, S. Ribault and R. Santachiara, A conformal bootstrap approach to critical percolation in two dimensions, SciPost Phys.1 (2016) 009.ADSCrossRefGoogle Scholar
  24. [24]
    C.-M. Chang and Y.-H. Lin, Bootstrap, universality and horizons, JHEP10 (2016) 068 [arXiv:1604.01774] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  25. [25]
    T. Anous, R. Mahajan and E. Shaghoulian, Parity and the modular bootstrap, SciPost Phys.5 (2018) 022 [arXiv:1803.04938] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    W. Li, New method for the conformal bootstrap with OPE truncations, arXiv:1711.09075 [INSPIRE].
  27. [27]
    S. Collier, Y. Gobeil, H. Maxfield and E. Perlmutter, Quantum Regge trajectories and the Virasoro analytic bootstrap, JHEP05 (2019) 212 [arXiv:1811.05710] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    H. Kim, P. Kravchuk and H. Ooguri, Reflections on conformal spectra, JHEP04 (2016) 184 [arXiv:1510.08772] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. Collier, P. Kravchuk, Y.-H. Lin and X. Yin, Bootstrapping the spectral function: on the uniqueness of Liouville and the universality of BTZ, JHEP09 (2018) 150 [arXiv:1702.00423] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    D. Friedan and C.A. Keller, Constraints on 2d CFT partition functions, JHEP10 (2013) 180 [arXiv:1307.6562] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    M. Ashrafi and F. Loran, Non-chiral 2d CFT with integer energy levels, JHEP09 (2016) 121 [arXiv:1607.08516] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2d conformal field theory in the large c limit, JHEP09 (2014) 118 [arXiv:1405.5137] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    P. Kraus and A. Sivaramakrishnan, Light-state dominance from the conformal bootstrap, JHEP08 (2019) 013 [arXiv:1812.02226] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  34. [34]
    Y. Kusuki, Light cone bootstrap in general 2D CFTs and entanglement from light cone singularity, JHEP01 (2019) 025 [arXiv:1810.01335] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    M. Cho, S. Collier and X. Yin, Genus two modular bootstrap, JHEP04 (2019) 022 [arXiv:1705.05865] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    A. Belin, C.A. Keller and I.G. Zadeh, Genus two partition functions and Ŕenyi entropies of large c conformal field theories, J. Phys.A 50 (2017) 435401 [arXiv:1704.08250] [INSPIRE].ADSzbMATHGoogle Scholar
  37. [37]
    N. Benjamin, E. Dyer, A.L. Fitzpatrick and Y. Xin, The most irrational rational theories, JHEP04 (2019) 025 [arXiv:1812.07579] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    N. Afkhami-Jeddi, T. Hartman and A. Tajdini, Fast conformal bootstrap and constraints on 3d gravity, JHEP05 (2019) 087 [arXiv:1903.06272] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    W. Song and J. Xu, Structure constants from modularity in warped CFT, arXiv:1903.01346 [INSPIRE].
  40. [40]
    C.N. Gowdigere, J. Santara and Sumedha, Conformal bootstrap signatures of the tricritical Ising universality class, arXiv:1811.11442 [INSPIRE].
  41. [41]
    A. de la Fuente, Bootstrapping mixed correlators in the 2D Ising model, arXiv:1904.09801 [INSPIRE].
  42. [42]
    S. Collier, Y.-H. Lin and X. Yin, Modular bootstrap revisited, JHEP09 (2018) 061 [arXiv:1608.06241] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    N. Benjamin, E. Dyer, A.L. Fitzpatrick and S. Kachru, Universal bounds on charged states in 2d CFT and 3d gravity, JHEP08 (2016) 041 [arXiv:1603.09745] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    E. Dyer, A.L. Fitzpatrick and Y. Xin, Constraints on flavored 2d CFT partition functions, JHEP02 (2018) 148 [arXiv:1709.01533] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    J.-B. Bae, S. Lee and J. Song, Modular constraints on conformal field theories with currents, JHEP12 (2017) 045 [arXiv:1708.08815] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, (2, 2) superconformal bootstrap in two dimensions, JHEP05 (2017) 112 [arXiv:1610.05371] [INSPIRE].
  47. [47]
    D. Das, S. Datta and S. Pal, Charged structure constants from modularity, JHEP11 (2017) 183 [arXiv:1706.04612] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    J.-B. Bae, S. Lee and J. Song, Modular constraints on superconformal field theories, JHEP01 (2019) 209 [arXiv:1811.00976] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A black hole Farey tail, hep-th/0005003 [INSPIRE].
  50. [50]
    P. Kraus, Lectures on black holes and the AdS3 /C F T2 correspondence, Lect. Notes Phys.755 (2008) 193 [hep-th/0609074] [INSPIRE].ADSzbMATHGoogle Scholar
  51. [51]
    A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP02 (2010) 029 [arXiv:0712.0155] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    J.F. Duncan and I.B. Frenkel, Rademacher sums, Moonshine and gravity, Commun. Num. Theor. Phys.5 (2011) 849 [arXiv:0907.4529] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    A. Castro, N. Lashkari and A. Maloney, A de Sitter Farey tail, Phys. Rev.D 83 (2011) 124027 [arXiv:1103.4620] [INSPIRE].ADSGoogle Scholar
  54. [54]
    C.A. Keller and A. Maloney, Poincaŕe series, 3D gravity and CFT spectroscopy, JHEP02 (2015) 080 [arXiv:1407.6008] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  55. [55]
    S. Murthy and B. Pioline, A Farey tale for N = 4 dyons, JHEP09 (2009) 022 [arXiv:0904.4253] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    S.G. Naculich and H.J. Schnitzer, Duality between SU(N )k and SU(K )-N WZW Models, Nucl. Phys.B 347 (1990) 687 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    MathWorld — A Wolfram Web Resource: Elliptic Lambda Function, http://mathworld.wolfram.com/EllipticLambdaFunction.html.
  58. [58]
    A.B. Zamolodchikov, Conformal symmetry in two-dimensional space: Recursion representation of conformal block, Theor. Math. Phys.73 (1987) 1088.CrossRefGoogle Scholar
  59. [59]
    P.D. Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer, Germany (1997).Google Scholar
  60. [60]
    R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory: with applications to string theory, Lecture Notes in Physics, Springer, Germany (2009), see chapter 3.zbMATHCrossRefGoogle Scholar
  61. [61]
    MathWorld — A Wolfram Web Resource: Hypergeometric Function, http://mathworld.wolfram.com/HypergeometricFunction.html.
  62. [62]
    R.W. Bruggeman, Automorphic forms for the theta group, The Modern Birkh¨auser Classics book series , Springer, Germany (1994), see chapter 14.Google Scholar
  63. [63]
    S.G. Naculich and H.J. Schnitzer, Duality relations between SU(N )-k and SU(K )-N WZW models and their braid matrices, Phys. Lett.B 244 (1990) 235 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    S.G. Naculich, H.A. Riggs and H.J. Schnitzer, Group level duality in WZW models and Chern-Simons theory, Phys. Lett.B 246 (1990) 417 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    S. Jackson, L. McGough and H. Verlinde, Conformal bootstrap, universality and gravitational scattering, Nucl. Phys.B 901 (2015) 382 [arXiv:1412.5205] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality from classical background fields, JHEP11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    A.L. Fitzpatrick and J. Kaplan, Conformal blocks beyond the semi-classical limit, JHEP05 (2016) 075 [arXiv:1512.03052] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS3 gravity, JHEP12 (2015) 077 [arXiv:1508.04987] [INSPIRE].ADSzbMATHGoogle Scholar
  69. [69]
    E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP07 (2015) 131 [arXiv:1501.02260] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    C.-M. Chang and Y.-H. Lin, Bootstrapping 2D CFTs in the semiclassical limit, JHEP08 (2016) 056 [arXiv:1510.02464] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    A. Bhatta, P. Raman and N.V. Suryanarayana, Holographic conformal partial waves as gravitational open Wilson networks, JHEP06 (2016) 119 [arXiv:1602.02962] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    J.C. Cresswell, I.T. Jardine and A.W. Peet, Holographic relations for OPE blocks in excited states, JHEP03 (2019) 058 [arXiv:1809.09107] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  73. [73]
    B. Carneiro da Cunha and M. Guica, Exploring the BTZ bulk with boundary conformal blocks, arXiv:1604.07383 [INSPIRE].
  74. [74]
    V. Balasubramanian et al., Heavy-heavy-light-light correlators in Liouville theory, JHEP08 (2017) 045 [arXiv:1705.08004] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Harish-Chandra Research Institute, HBNIAllahabadIndia

Personalised recommendations