Crossing, modular averages and N ↔ k in WZW models
- 28 Downloads
Abstract
We consider the construction of genus zero correlators of SU(N )k WZW models involving two Kac-Moody primaries in the fundamental and two in the anti-fundamental representation from modular averaging of the contribution of the vacuum conformal block. We perform the averaging by two prescriptions — averaging over the stabiliser group associated with the correlator and averaging over the entire modular group. For the first method, in cases where we find the orbit of the vacuum conformal block to be finite, modular averaging reproduces the exact result for the correlators. In other cases, we perform the modular averaging numerically, the results are in agreement with the exact answers. Construction of correlators from averaging over whole of the modular group is more involved. Here, we find some examples where modular averaging does not reproduce the correlator. We find a close relationship between the modular averaging sums of the theories related by level-rank duality. We establish a one to one correspondence between elements of the orbits of the vacuum conformal blocks of dual theories. The contributions of paired terms to their respective correlators are simply related. One consequence of this is that the ratio between the OPE coefficients associated with dual correlators can be obtained analytically without performing the sums involved in the modular averagings. The pairing of terms in the modular averaging sums for dual theories suggests an interesting connection between level-rank duality and semi-classical holographic computations of the correlators in the theories.
Keywords
Conformal and W Symmetry Conformal Field TheoryNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
References
- [1]S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys.76 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [2]A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [Sov. Phys. JETP39 (1974) 9] [INSPIRE].Google Scholar
- [3]D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques and applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [4]D. Simmons-Duffin, The conformal bootstrap, arXiv:1602.07982 [INSPIRE].
- [5]S. Rychkov, EPFL lectures on conformal field theory in D ≥ 3 dimensions, arXiv:1601.05000.
- [6]M.F. Paulos, JuliBootS: a hands-on guide to the conformal bootstrap, arXiv:1412.4127 [INSPIRE].
- [7]C. Beem, L. Rastelli, A. Sen and B.C. van Rees, Resummation and S-duality in N = 4 SYM, JHEP04 (2014) 122 [arXiv:1306.3228] [INSPIRE].ADSCrossRefGoogle Scholar
- [8]S. Jain et al., Unitarity, crossing symmetry and duality of the S-matrix in large N Chern-Simons theories with fundamental matter, JHEP04 (2015) 129 [arXiv:1404.6373] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [9]A. Maloney, H. Maxfield and G.S. Ng, A conformal block Farey tail, JHEP06 (2017) 117 [arXiv:1609.02165] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [10]A. Castro et al., The gravity dual of the Ising model, Phys. Rev.D 85 (2012) 024032 [arXiv:1111.1987] [INSPIRE].ADSGoogle Scholar
- [11]A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys.B 241 (1984) 333 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [12]V.G. Knizhnik and A.B. Zamolodchikov, Current algebra and Wess-Zumino model in two-dimensions, Nucl. Phys.B 247 (1984) 83 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [13]D. Gepner and E. Witten, String theory on group manifolds, Nucl. Phys.B 278 (1986) 493 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [14]A. Cappelli, C. Itzykson and J.B. Zuber, Modular invariant partition functions in two-dimensions, Nucl. Phys.B 280 (1987) 445 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [15]J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys.B 270 (1986) 186 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [16]E.P. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys.B 300 (1988) 360 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [17]R. Dijkgraaf and E.P. Verlinde, Modular invariance and the fusion algebra, Nucl. Phys. Proc. Suppl.5 (1988) 87 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [18]G.W. Moore and N. Seiberg, Polynomial equations for rational conformal field theories, Phys. Lett.B 212 (1988) 451 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [19]G.W. Moore and N. Seiberg, Naturality in conformal field theory, Nucl. Phys.B 313 (1989) 16 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [20]P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept.223 (1993) 183 [hep-th/9210010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [21]S. Hellerman, A universal inequality for CFT and quantum gravity, JHEP08 (2011) 130 [arXiv:0902.2790] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [22]S. Ribault and R. Santachiara, Liouville theory with a central charge less than one, JHEP08 (2015) 109 [arXiv:1503.02067] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [23]M. Picco, S. Ribault and R. Santachiara, A conformal bootstrap approach to critical percolation in two dimensions, SciPost Phys.1 (2016) 009.ADSCrossRefGoogle Scholar
- [24]C.-M. Chang and Y.-H. Lin, Bootstrap, universality and horizons, JHEP10 (2016) 068 [arXiv:1604.01774] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [25]T. Anous, R. Mahajan and E. Shaghoulian, Parity and the modular bootstrap, SciPost Phys.5 (2018) 022 [arXiv:1803.04938] [INSPIRE].ADSCrossRefGoogle Scholar
- [26]W. Li, New method for the conformal bootstrap with OPE truncations, arXiv:1711.09075 [INSPIRE].
- [27]S. Collier, Y. Gobeil, H. Maxfield and E. Perlmutter, Quantum Regge trajectories and the Virasoro analytic bootstrap, JHEP05 (2019) 212 [arXiv:1811.05710] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [28]H. Kim, P. Kravchuk and H. Ooguri, Reflections on conformal spectra, JHEP04 (2016) 184 [arXiv:1510.08772] [INSPIRE].ADSGoogle Scholar
- [29]S. Collier, P. Kravchuk, Y.-H. Lin and X. Yin, Bootstrapping the spectral function: on the uniqueness of Liouville and the universality of BTZ, JHEP09 (2018) 150 [arXiv:1702.00423] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [30]D. Friedan and C.A. Keller, Constraints on 2d CFT partition functions, JHEP10 (2013) 180 [arXiv:1307.6562] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [31]M. Ashrafi and F. Loran, Non-chiral 2d CFT with integer energy levels, JHEP09 (2016) 121 [arXiv:1607.08516] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [32]T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2d conformal field theory in the large c limit, JHEP09 (2014) 118 [arXiv:1405.5137] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [33]P. Kraus and A. Sivaramakrishnan, Light-state dominance from the conformal bootstrap, JHEP08 (2019) 013 [arXiv:1812.02226] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [34]Y. Kusuki, Light cone bootstrap in general 2D CFTs and entanglement from light cone singularity, JHEP01 (2019) 025 [arXiv:1810.01335] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [35]M. Cho, S. Collier and X. Yin, Genus two modular bootstrap, JHEP04 (2019) 022 [arXiv:1705.05865] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [36]A. Belin, C.A. Keller and I.G. Zadeh, Genus two partition functions and Ŕenyi entropies of large c conformal field theories, J. Phys.A 50 (2017) 435401 [arXiv:1704.08250] [INSPIRE].ADSzbMATHGoogle Scholar
- [37]N. Benjamin, E. Dyer, A.L. Fitzpatrick and Y. Xin, The most irrational rational theories, JHEP04 (2019) 025 [arXiv:1812.07579] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [38]N. Afkhami-Jeddi, T. Hartman and A. Tajdini, Fast conformal bootstrap and constraints on 3d gravity, JHEP05 (2019) 087 [arXiv:1903.06272] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [39]W. Song and J. Xu, Structure constants from modularity in warped CFT, arXiv:1903.01346 [INSPIRE].
- [40]C.N. Gowdigere, J. Santara and Sumedha, Conformal bootstrap signatures of the tricritical Ising universality class, arXiv:1811.11442 [INSPIRE].
- [41]A. de la Fuente, Bootstrapping mixed correlators in the 2D Ising model, arXiv:1904.09801 [INSPIRE].
- [42]S. Collier, Y.-H. Lin and X. Yin, Modular bootstrap revisited, JHEP09 (2018) 061 [arXiv:1608.06241] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [43]N. Benjamin, E. Dyer, A.L. Fitzpatrick and S. Kachru, Universal bounds on charged states in 2d CFT and 3d gravity, JHEP08 (2016) 041 [arXiv:1603.09745] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [44]E. Dyer, A.L. Fitzpatrick and Y. Xin, Constraints on flavored 2d CFT partition functions, JHEP02 (2018) 148 [arXiv:1709.01533] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [45]J.-B. Bae, S. Lee and J. Song, Modular constraints on conformal field theories with currents, JHEP12 (2017) 045 [arXiv:1708.08815] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [46]Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, (2, 2) superconformal bootstrap in two dimensions, JHEP05 (2017) 112 [arXiv:1610.05371] [INSPIRE].
- [47]D. Das, S. Datta and S. Pal, Charged structure constants from modularity, JHEP11 (2017) 183 [arXiv:1706.04612] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [48]J.-B. Bae, S. Lee and J. Song, Modular constraints on superconformal field theories, JHEP01 (2019) 209 [arXiv:1811.00976] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [49]R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A black hole Farey tail, hep-th/0005003 [INSPIRE].
- [50]P. Kraus, Lectures on black holes and the AdS3 /C F T2 correspondence, Lect. Notes Phys.755 (2008) 193 [hep-th/0609074] [INSPIRE].ADSzbMATHGoogle Scholar
- [51]A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP02 (2010) 029 [arXiv:0712.0155] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [52]J.F. Duncan and I.B. Frenkel, Rademacher sums, Moonshine and gravity, Commun. Num. Theor. Phys.5 (2011) 849 [arXiv:0907.4529] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
- [53]A. Castro, N. Lashkari and A. Maloney, A de Sitter Farey tail, Phys. Rev.D 83 (2011) 124027 [arXiv:1103.4620] [INSPIRE].ADSGoogle Scholar
- [54]C.A. Keller and A. Maloney, Poincaŕe series, 3D gravity and CFT spectroscopy, JHEP02 (2015) 080 [arXiv:1407.6008] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
- [55]S. Murthy and B. Pioline, A Farey tale for N = 4 dyons, JHEP09 (2009) 022 [arXiv:0904.4253] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [56]S.G. Naculich and H.J. Schnitzer, Duality between SU(N )k and SU(K )-N WZW Models, Nucl. Phys.B 347 (1990) 687 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [57]MathWorld — A Wolfram Web Resource: Elliptic Lambda Function, http://mathworld.wolfram.com/EllipticLambdaFunction.html.
- [58]A.B. Zamolodchikov, Conformal symmetry in two-dimensional space: Recursion representation of conformal block, Theor. Math. Phys.73 (1987) 1088.CrossRefGoogle Scholar
- [59]P.D. Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer, Germany (1997).Google Scholar
- [60]R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory: with applications to string theory, Lecture Notes in Physics, Springer, Germany (2009), see chapter 3.zbMATHCrossRefGoogle Scholar
- [61]MathWorld — A Wolfram Web Resource: Hypergeometric Function, http://mathworld.wolfram.com/HypergeometricFunction.html.
- [62]R.W. Bruggeman, Automorphic forms for the theta group, The Modern Birkh¨auser Classics book series , Springer, Germany (1994), see chapter 14.Google Scholar
- [63]S.G. Naculich and H.J. Schnitzer, Duality relations between SU(N )-k and SU(K )-N WZW models and their braid matrices, Phys. Lett.B 244 (1990) 235 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [64]S.G. Naculich, H.A. Riggs and H.J. Schnitzer, Group level duality in WZW models and Chern-Simons theory, Phys. Lett.B 246 (1990) 417 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [65]S. Jackson, L. McGough and H. Verlinde, Conformal bootstrap, universality and gravitational scattering, Nucl. Phys.B 901 (2015) 382 [arXiv:1412.5205] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [66]A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality from classical background fields, JHEP11 (2015) 200 [arXiv:1501.05315] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [67]A.L. Fitzpatrick and J. Kaplan, Conformal blocks beyond the semi-classical limit, JHEP05 (2016) 075 [arXiv:1512.03052] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [68]E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS3 gravity, JHEP12 (2015) 077 [arXiv:1508.04987] [INSPIRE].ADSzbMATHGoogle Scholar
- [69]E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP07 (2015) 131 [arXiv:1501.02260] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [70]C.-M. Chang and Y.-H. Lin, Bootstrapping 2D CFTs in the semiclassical limit, JHEP08 (2016) 056 [arXiv:1510.02464] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [71]A. Bhatta, P. Raman and N.V. Suryanarayana, Holographic conformal partial waves as gravitational open Wilson networks, JHEP06 (2016) 119 [arXiv:1602.02962] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [72]J.C. Cresswell, I.T. Jardine and A.W. Peet, Holographic relations for OPE blocks in excited states, JHEP03 (2019) 058 [arXiv:1809.09107] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [73]B. Carneiro da Cunha and M. Guica, Exploring the BTZ bulk with boundary conformal blocks, arXiv:1604.07383 [INSPIRE].
- [74]V. Balasubramanian et al., Heavy-heavy-light-light correlators in Liouville theory, JHEP08 (2017) 045 [arXiv:1705.08004] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar