Advertisement

Condensates of interacting non-Abelian SO(5)Nf anyons

  • Daniel Borcherding
  • Holger FrahmEmail author
Open Access
Regular Article - Theoretical Physics
  • 23 Downloads

Abstract

Starting from a one-dimensional model of relativistic fermions with SO(5) spin and U(Nf ) flavour degrees of freedom we study the condensation of SO(5)Nf anyons. In the low-energy limit the quasi-particles in the spin sector of this model are found to be massive solitons forming multiplets in the SO(5) vector or spinor representations. The solitons carry internal degrees of freedom which are identified as SO(5)Nf anyons. By controlling the external magnetic fields the transitions from a dilute gas of free anyons to various collective states of interacting ones are observed. We identify the generalized parafermionic cosets describing these collective states and propose a low temperature phase diagram for the anyonic modes.

Keywords

Bethe Ansatz Conformal Field Theory Integrable Field Theories Anyons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    A. Yu. Kitaev, Fault tolerant quantum computation by anyons, Annals Phys.303 (2003) 2 [quant-ph/9707021] [INSPIRE].
  2. [2]
    G.W. Moore and N. Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys.B 360 (1991) 362 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    N. Read and E. Rezayi, Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level, Phys. Rev.B 59 (1999) 8084 [cond-mat/9809384] [INSPIRE].
  4. [4]
    N. Read and D. Green, Paired states of fermions in two-dimensions with breaking of parity and time reversal symmetries and the fractional quantum Hall effect, Phys. Rev.B 61 (2000) 10267 [cond-mat/9906453] [INSPIRE].
  5. [5]
    C. Nayak, S.H. Simon, A. Stern, M. Freedman and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys.80 (2008) 1083 [arXiv:0707.1889] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    A. Feiguin et al., Interacting anyons in topological quantum liquids: the golden chain, Phys. Rev. Lett.98 (2007) 160409 [cond-mat/0612341] [INSPIRE].
  7. [7]
    B.J. Brown, D. Loss, J.K. Pachos, C.N. Self and J.R. Wootton, Quantum memories at finite temperature, Rev. Mod. Phys.88 (2016) 045005 [arXiv:1411.6643] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    C. Gils et al., Anyonic quantum spin chains: spin-1 generalizations and topological stability, Phys. Rev.B 87 (2013) 235120 [arXiv:1303.4290].ADSCrossRefGoogle Scholar
  9. [9]
    P.E. Finch, H. Frahm, M. Lewerenz, A. Milsted and T.J. Osborne, Quantum phases of a chain of strongly interacting anyons, Phys. Rev.B 90 (2014) 081111 [arXiv:1404.2439] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P.E. Finch, M. Flohr and H. Frahm, Integrable anyon chains: from fusion rules to face models to effective field theories, Nucl. Phys.B 889 (2014) 299 [arXiv:1408.1282] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    N. Braylovskaya, P.E. Finch and H. Frahm, Exact solution of the D3 non-Abelian anyon chain, Phys. Rev.B 94 (2016) 085138 [arXiv:1606.00793] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    E. Vernier, J. Jacobsen and H. Saleur, Elaborating the phase diagram of spin-1 anyonic chains, SciPost Phys.2 (2017) 004 [arXiv:1611.02236].ADSCrossRefGoogle Scholar
  13. [13]
    P.E. Finch, M. Flohr and H. Frahm, Zn clock models and chains of SO(N )2 non-Abelian anyons: symmetries, integrable points and low energy properties, J. Stat. Mech.1802 (2018) 023103 [arXiv:1710.09620] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    A.M. Tsvelik, Integrable model with parafermion zero energy modes, Phys. Rev. Lett.113 (2014) 066401 [arXiv:1404.2840] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    D. Borcherding and H. Frahm, Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model, J. Phys.A 51 (2018) 195001 [arXiv:1706.09822] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  16. [16]
    D. Borcherding and H. Frahm, Condensation of non-Abelian SU(3)N fanyons in a one-dimensional fermion model, J. Phys.A 51 (2018) 495002 [arXiv:1808.05808] [INSPIRE].ADSzbMATHGoogle Scholar
  17. [17]
    D. Scalapino, S.-C. Zhang and W. Hanke, SO(5) symmetric ladder, Phys. Rev.B 58 (1998) 443 [cond-mat/9711117].ADSCrossRefGoogle Scholar
  18. [18]
    H. Frahm and M. Stahlsmeier, Electronic ladders with SO(5) symmetry: phase diagrams and correlations at half filling, Phys. Rev.B 63 (2001) 125109 [cond-mat/0009443].
  19. [19]
    P. Di Francesco, P. Mathieu and D. Śeńechal, Conformal field theory, Springer, New York, NY, U.S.A. (1997) [INSPIRE].
  20. [20]
    A.M. Polyakov and P.B. Wiegmann, Theory of non-Abelian Goldstone bosons, Phys. Lett.B 131 (1983) 121 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    E. Ogievetsky and P. Wiegmann, Factorized S matrix and the Bethe ansatz for simple Lie groups, Phys. Lett.B 168 (1986) 360 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    E. Ogievetsky, P. Wiegmann and N. Reshetikhin, The principal chiral field in two-dimensions on classical Lie algebras: the Bethe ansatz solution and factorized theory of scattering, Nucl. Phys.B 280 (1987) 45 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M. Nakagawara, Magnetic properties of two-dimensional SO(5) × SO(5) chiral model, Prog. Theor. Phys.76 (1986) 216 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    V.V. Bazhanov, Trigonometric solution of triangle equations and classical Lie algebras, Phys. Lett.B 159 (1985) 321 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    M. Jimbo, Quantum R matrix for the generalized Toda system, Commun. Math. Phys.102 (1986) 537 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    V.V. Bazhanov, Integrable quantum systems and classical Lie algebras, Commun. Math. Phys.113 (1987) 471 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    N. Yu. Reshetikhin and P.B. Wiegmann, Towards the classification of completely integrable quantum field theories, Phys. Lett.B 189 (1987) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Yu. Reshetikhin, Integrable models of quantum one-dimensional magnets with O(N ) and Sp(2k) symmetry, Theor. Math. Phys.63 (1985) 555 [Teor. Mat. Fiz.63 (1985) 347] [INSPIRE].
  29. [29]
    M. Takahashi and M. Suzuki, One-dimensional anisotropic Heisenberg model at finite temperatures, Prog. Theor. Phys.48 (1972) 2187 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M.J. Martins, Fractional strings hypothesis and nonsimple laced integrable models, J. Phys.A 24 (1991) L159 [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    C.N. Yang and C.P. Yang, One-dimensional chain of anisotropic spin spin interactions. 2. Properties of the ground state energy per lattice site for an infinite system, Phys. Rev.150 327 [INSPIRE].
  32. [32]
    C.-N. Yang and C.P. Yang, Thermodynamics of one-dimensional system of bosons with repulsive delta function interaction, J. Math. Phys.10 (1969) 1115 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    N.D. Vlasii, F. von Rütte and U.J. Wiese, Graphical tensor product reduction scheme for the Lie algebras so(5) = sp(2), su(3) and G2 , Annals Phys.371 (2016) 199 [arXiv:1511.02015] [INSPIRE].
  34. [34]
    A.N. Kirillov and N.Y. Reshetikhin, Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. II. Thermodynamics of the system, J. Phys.A 20 (1987) 1587.Google Scholar
  35. [35]
    T. Nakanishi, Dilogarithm identities for conformal field theories and cluster algebras: simply laced case, arXiv:0909.5480 [INSPIRE].
  36. [36]
    D. Gepner, New conformal field theories associated with Lie algebras and their partition functions, Nucl. Phys.B 290 (1987) 10 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    C.-N. Yang and C.P. Yang, One-dimensional chain of anisotropic spin spin interactions. I. Proof of Bethe’s hypothesis for ground state in a finite system, Phys. Rev.150 (1966) 321 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikLeibniz Universit at HannoverHannoverGermany

Personalised recommendations