Advertisement

Radiogenic backgrounds in the NEXT double beta decay experiment

  • The NEXT collaboration
  • P. NovellaEmail author
  • B. Palmeiro
  • M. Sorel
  • A. Usón
  • P. Ferrario
  • J. J. Gómez-Cadenas
  • C. Adams
  • V. Álvarez
  • L. Arazi
  • I. J. Arnquist
  • C. D. R Azevedo
  • K. Bailey
  • F. Ballester
  • J. M. Benlloch-Rodríguez
  • F. I. G. M. Borges
  • N. Byrnes
  • S. Cárcel
  • J. V. Carrión
  • S. Cebrían
  • E. Church
  • C. A. N. Conde
  • T. Contreras
  • G. Díaz
  • J. Díaz
  • M. Diesburg
  • J. Escada
  • R. Esteve
  • R. Felkai
  • A. F. M. Fernandes
  • L. M. P. Fernandes
  • A. L. Ferreira
  • E. D. C. Freitas
  • J. Generowicz
  • S. Ghosh
  • A. Goldschmidt
  • D. Gonźalez-Díaz
  • R. Guenette
  • R. M. Gutiérrez
  • J. Haefner
  • K. Hafidi
  • J. Hauptman
  • C. A. O. Henriques
  • J. A. Hernando Morata
  • P. Herrero
  • V. Herrero
  • Y. Ifergan
  • S. Johnston
  • B. J. P. Jones
  • M. Kekic
  • L. Labarga
  • A. Laing
  • P. Lebrun
  • N. López-March
  • M. Losada
  • R. D. P. Mano
  • J. Martín-Albo
  • A. Martínez
  • G. Martínez-Lema
  • A. D. McDonald
  • F. Monrabal
  • C. M. B. Monteiro
  • F. J. Mora
  • J. Muñoz Vidal
  • D. R. Nygren
  • A. Para
  • J. Pérez
  • F. Psihas
  • M. Querol
  • J. Renner
  • J. Repond
  • S. Riordan
  • L. Ripoll
  • Y. Rodríguez García
  • J. Rodríguez
  • L. Rogers
  • B. Romeo
  • C. Romo-Luque
  • F. P. Santos
  • J. M. F. dos Santos
  • A. Simón
  • C. Sofka
  • T. Stiegler
  • J. F. Toledo
  • J. Torrent
  • J. F. C. A. Veloso
  • R. Webb
  • R. Weiss-Babai
  • J. T. White
  • K. Woodruff
  • N. Yahlali
Open Access
Regular Article - Experimental Physics
  • 36 Downloads

Abstract

Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity- induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of low-background operations at the Laboratorio Subterráneo de Canfranc with xenon depleted in 136Xe are analyzed to derive a total background rate of (0.84±0.02) mHz above 1000 keV. The comparison of data samples with and without the use of the radon abatement system demonstrates that the contribution of airborne-Rn is negligible. A radiogenic background model is built upon the extensive radiopurity screening campaign conducted by the NEXT collaboration. A spectral fit to this model yields the specific contributions of 60Co, 40K, 214Bi and 208Tl to the total background rate, as well as their location in the detector volumes. The results are used to evaluate the impact of the radiogenic backgrounds in the double beta decay analyses, after the application of topological cuts that reduce the total rate to (0.25±0.01) mHz. Based on the best-fit background model, the NEXT-White median sensitivity to the two-neutrino double beta decay is found to be 3.5σ after 1 year of data taking. The background measurement in a Qββ±100 keV energy window validates the best-fit background model also for the neutrinoless double beta decay search with NEXT-100. Only one event is found, while the model expectation is (0.75±0.12) events.

Keywords

Dark Matter and Double Beta Decay (experiments) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    KamLAND-Zen collaboration, Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett.117 (2016) 082503 [arXiv:1605.02889] [INSPIRE].
  2. [2]
    GERDA collaboration, Improved Limit on Neutrinoless Double-β Decay of 76Ge from GERDA Phase II, Phys. Rev. Lett.120 (2018) 132503 [arXiv:1803.11100] [INSPIRE].
  3. [3]
    NEXT collaboration, NEXT-100 Technical Design Report (TDR): Executive Summary, 2012JINST7 T06001 [arXiv:1202.0721] [INSPIRE].
  4. [4]
    M. Redshaw, E. Wingfield, J. McDaniel and E.G. Myers, Mass and double-beta-decay Q value of Xe-136, Phys. Rev. Lett.98 (2007) 053003 [INSPIRE].
  5. [5]
    EXO-200 collaboration, Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector, Phys. Rev.C 89 (2014) 015502 [arXiv:1306.6106] [INSPIRE].
  6. [6]
    KamLAND-Zen collaboration, Measurement of the double-β decay half-life of 136Xe with the KamLAND-Zen experiment, Phys. Rev.C 85 (2012) 045504 [arXiv:1201.4664] [INSPIRE].
  7. [7]
    NEXT collaboration, Initial results on energy resolution of the NEXT-White detector, 2018JINST13 P10020 [arXiv:1808.01804] [INSPIRE].
  8. [8]
    NEXT collaboration, Energy Calibration of the NEXT-White Detector with 1% Resolution Near Q ββof 136Xe, arXiv:1905.13110 [INSPIRE].
  9. [9]
    NEXT collaboration, Near-Intrinsic Energy Resolution for 30 to 662 keV Gamma Rays in a High Pressure Xenon Electroluminescent TPC, Nucl. Instrum. Meth.A 708 (2013) 101 [arXiv:1211.4474] [INSPIRE].
  10. [10]
    NEXT collaboration, Characterisation of NEXT-DEMO using xenon K αX-rays, 2014JINST9 P10007 [arXiv:1407.3966] [INSPIRE].
  11. [11]
    NEXT collaboration, First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment, JHEP01 (2016) 104 [arXiv:1507.05902] [INSPIRE].
  12. [12]
    NEXT collaboration, Demonstration of the event identification capabilities of the NEXT-White detector, arXiv:1905.13141 [INSPIRE].
  13. [13]
    A.D. McDonald et al., Demonstration of Single Barium Ion Sensitivity for Neutrinoless Double Beta Decay using Single Molecule Fluorescence Imaging, Phys. Rev. Lett.120 (2018) 132504 [arXiv:1711.04782] [INSPIRE].
  14. [14]
    P. Thapa et al., Barium Chemosensors with Dry-Phase Fluorescence for Neutrinoless Double Beta Decay, arXiv:1904.05901 [INSPIRE].
  15. [15]
    NEXT collaboration, Ionization and scintillation response of high-pressure xenon gas to alpha particles, 2013 JINST8 P05025 [arXiv:1211.4508] [INSPIRE].
  16. [16]
    NEXT collaboration, Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment, 2013 JINST8 P04002 [arXiv:1211.4838] [INSPIRE].
  17. [17]
    NEXT collaboration, Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array, 2013 JINST8 P09011 [arXiv:1306.0471] [INSPIRE].
  18. [18]
    NEXT collaboration, Description and commissioning of NEXT-MM prototype: first results from operation in a Xenon-Trimethylamine gas mixture, 2014 JINST9 P03010 [arXiv:1311.3242] [INSPIRE].
  19. [19]
    NEXT collaboration, Ionization and scintillation of nuclear recoils in gaseous xenon, Nucl. Instrum. Meth.A 793 (2015) 62 [arXiv:1409.2853] [INSPIRE].
  20. [20]
    NEXT collaboration, An improved measurement of electron-ion recombination in high-pressure xenon gas, 2015 JINST10 P03025 [arXiv:1412.3573] [INSPIRE].
  21. [21]
    NEXT collaboration, Accurate γ and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm, Nucl. Instrum. Meth.A 804 (2015) 8 [arXiv:1504.03678] [INSPIRE].
  22. [22]
    NEXT collaboration, The Next White (NEW) Detector, 2018 JINST13 P12010 [arXiv:1804.02409] [INSPIRE].
  23. [23]
    NEXT collaboration, Sensitivity of NEXT-100 to Neutrinoless Double Beta Decay, JHEP05 (2016) 159 [arXiv:1511.09246] [INSPIRE].
  24. [24]
    V. Alvarez et al., Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements, 2013 JINST8 T01002 [arXiv:1211.3961] [INSPIRE].
  25. [25]
    NEXT collaboration, Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment, 2015 JINST10 P05006 [arXiv:1411.1433] [INSPIRE].
  26. [26]
    NEXT collaboration, Radiopurity assessment of the energy readout for the NEXT double beta decay experiment, 2017 JINST12 T08003 [arXiv:1706.06012] [INSPIRE].
  27. [27]
    NEXT collaboration, Measurement of radon-induced backgrounds in the NEXT double beta decay experiment, JHEP10 (2018) 112 [arXiv:1804.00471] [INSPIRE].
  28. [28]
    NEXT collaboration, Electron drift properties in high pressure gaseous xenon, 2018 JINST13 P07013 [arXiv:1804.01680] [INSPIRE].
  29. [29]
    NEXT collaboration, Calibration of the NEXT-White detector using 83m Kr decays, 2018JINST13 P10014 [arXiv:1804.01780] [INSPIRE].
  30. [30]
    NEXT collaboration, Background rejection in NEXT using deep neural networks, 2017JINST12 T01004 [arXiv:1609.06202] [INSPIRE].
  31. [31]
    NEXT collaboration, Application and performance of an ML-EM algorithm in NEXT, 2017JINST12 P08009 [arXiv:1705.10270] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • The NEXT collaboration
  • P. Novella
    • 19
    Email author
  • B. Palmeiro
    • 19
  • M. Sorel
    • 19
  • A. Usón
    • 19
  • P. Ferrario
    • 16
    • 9
  • J. J. Gómez-Cadenas
    • 16
    • 9
  • C. Adams
    • 11
  • V. Álvarez
    • 19
  • L. Arazi
    • 6
  • I. J. Arnquist
    • 20
  • C. D. R Azevedo
    • 4
  • K. Bailey
    • 2
  • F. Ballester
    • 22
  • J. M. Benlloch-Rodríguez
    • 19
  • F. I. G. M. Borges
    • 14
  • N. Byrnes
    • 3
  • S. Cárcel
    • 19
  • J. V. Carrión
    • 19
  • S. Cebrían
    • 23
  • E. Church
    • 20
  • C. A. N. Conde
    • 14
  • T. Contreras
    • 11
  • G. Díaz
    • 21
    • 16
  • J. Díaz
    • 19
  • M. Diesburg
    • 5
  • J. Escada
    • 14
  • R. Esteve
    • 22
  • R. Felkai
    • 19
  • A. F. M. Fernandes
    • 13
  • L. M. P. Fernandes
    • 13
  • A. L. Ferreira
    • 4
  • E. D. C. Freitas
    • 13
  • J. Generowicz
    • 16
  • S. Ghosh
    • 11
  • A. Goldschmidt
    • 8
  • D. Gonźalez-Díaz
    • 21
  • R. Guenette
    • 11
  • R. M. Gutiérrez
    • 10
  • J. Haefner
    • 11
  • K. Hafidi
    • 2
  • J. Hauptman
    • 1
  • C. A. O. Henriques
    • 13
  • J. A. Hernando Morata
    • 21
  • P. Herrero
    • 16
    • 19
  • V. Herrero
    • 22
  • Y. Ifergan
    • 6
    • 7
  • S. Johnston
    • 2
  • B. J. P. Jones
    • 3
  • M. Kekic
    • 19
  • L. Labarga
    • 18
  • A. Laing
    • 3
  • P. Lebrun
    • 5
  • N. López-March
    • 19
  • M. Losada
    • 10
  • R. D. P. Mano
    • 13
  • J. Martín-Albo
    • 11
  • A. Martínez
    • 16
  • G. Martínez-Lema
    • 19
    • 21
    • 24
  • A. D. McDonald
    • 3
  • F. Monrabal
    • 16
    • 9
  • C. M. B. Monteiro
    • 13
  • F. J. Mora
    • 22
  • J. Muñoz Vidal
    • 19
  • D. R. Nygren
    • 3
  • A. Para
    • 5
  • J. Pérez
    • 12
  • F. Psihas
    • 3
  • M. Querol
    • 19
  • J. Renner
    • 19
  • J. Repond
    • 2
  • S. Riordan
    • 2
  • L. Ripoll
    • 17
  • Y. Rodríguez García
    • 10
  • J. Rodríguez
    • 22
  • L. Rogers
    • 3
  • B. Romeo
    • 16
    • 12
  • C. Romo-Luque
    • 19
  • F. P. Santos
    • 14
  • J. M. F. dos Santos
    • 13
  • A. Simón
    • 6
  • C. Sofka
    • 15
    • 25
  • T. Stiegler
    • 15
  • J. F. Toledo
    • 22
  • J. Torrent
    • 16
  • J. F. C. A. Veloso
    • 4
  • R. Webb
    • 15
  • R. Weiss-Babai
    • 6
  • J. T. White
    • 15
  • K. Woodruff
    • 3
  • N. Yahlali
    • 19
  1. 1.Department of Physics and AstronomyIowa State UniversityAmesU.S.A.
  2. 2.Argonne National LaboratoryArgonneU.S.A.
  3. 3.Department of PhysicsUniversity of Texas at ArlingtonArlingtonU.S.A.
  4. 4.Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N)Universidade de AveiroAveiroPortugal
  5. 5.Fermi National Accelerator LaboratoryBataviaU.S.A.
  6. 6.Nuclear Engineering Unit, Faculty of Engineering Sciences|Ben-Gurion University of the NegevBeer-ShevaIsrael
  7. 7.Nuclear Research Center NegevBeer-ShevaIsrael
  8. 8.Lawrence Berkeley National Laboratory (LBNL)BerkeleyU.S.A.
  9. 9.Ikerbasque, Basque Foundation for ScienceBilbaoSpain
  10. 10.Centro de Investigación en Ciencias Básicas y AplicadasUniversidad Antonio NariñoBogotáColombia
  11. 11.Department of PhysicsHarvard UniversityCambridgeU.S.A.
  12. 12.Laboratorio Subterráneo de CanfrancCanfranc EstaciónSpain
  13. 13.LIBPhys, Physics DepartmentUniversity of CoimbraCoimbraPortugal
  14. 14.LIP, Department of PhysicsUniversity of CoimbraCoimbraPortugal
  15. 15.Department of Physics and AstronomyTexas A&M UniversityCollege StationU.S.A.
  16. 16.Donostia International Physics Center (DIPC)Donostia-San SebastianSpain
  17. 17.Escola Politécnica SuperiorUniversitat de GironaGironaSpain
  18. 18.Departamento de Física TeóricaUniversidad Autónoma de MadridMadridSpain
  19. 19.Instituto de Física Corpuscular (IFIC), CSIC & Universitat de ValénciaPaternaSpain
  20. 20.Pacific Northwest National Laboratory (PNNL)RichlandU.S.A.
  21. 21.Instituto Gallego de Física de Altas Energías, Univ. de Santiago de CompostelaSantiago de CompostelaSpain
  22. 22.Instituto de Instrumentación para Imagen Molecular (I3M)Centro Mixto CSIC — Universitat Politècnica de Val̀enciaValenciaSpain
  23. 23.Laboratorio de Física Nuclear y AstropartículasUniversidad de ZaragozaZaragozaSpain
  24. 24.Weizmann Institute of ScienceRehovotIsrael
  25. 25.University of Texas at AustinAustinU.S.A.

Personalised recommendations