Advertisement

A note on inhomogeneous ground states at large global charge

  • Simeon Hellerman
  • Nozomu Kobayashi
  • Shunsuke Maeda
  • Masataka WatanabeEmail author
Open Access
Regular Article - Theoretical Physics
  • 17 Downloads

Abstract

In this note we search for the ground state of the D = 3 Wilson-Fisher conformal O(4) model, at nonzero values of the two independent charge densities ρ1,2, on the torus spatial slice. Using an effective theory valid on scales longer than the scale defined by the charge density, we show that the ground-state configuration is inhomogeneous for generic ratios ρ1/ρ2. This result confirms, within the context of a well-defined effective theory, a recent no-go result of [1]. We also show that any spatially periodic ground state solutions have an energetic preference towards longer periods, within some range of ρ1/ρ2 containing a neighborhood of zero. This suggests that the scale of variation of the ground state solution in finite volume will be the infrared scale, and that the use of the effective theory at large charge in finite volume is self-consistent. Note added: the statements in this paper are true for arbitrary ratio of ρ1/ρ2, which we proved after we uploaded this paper. See [2].

Keywords

Conformal Field Theory Effective Field Theories Global Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    L. Álvarez-Gaumé, O. Loukas, D. Orlando and S. Reffert, Compensating strong coupling with large charge, JHEP 04 (2017) 059 [arXiv:1610.04495] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    S. Hellerman, N. Kobayashi, S. Maeda and M. Watanabe, Observables in inhomogeneous ground states at large global charge, arXiv:1804.06495 [INSPIRE].
  3. [3]
    S. Hellerman, D. Orlando, S. Reffert and M. Watanabe, On the CFT operator spectrum at large global charge, JHEP 12 (2015) 071 [arXiv:1505.01537] [INSPIRE].
  4. [4]
    A. Monin, D. Pirtskhalava, R. Rattazzi and F.K. Seibold, Semiclassics, Goldstone bosons and CFT data, JHEP 06 (2017) 011 [arXiv:1611.02912] [INSPIRE].
  5. [5]
    O. Loukas, Abelian scalar theory at large global charge, Fortsch. Phys. 65 (2017) 1700028 [arXiv:1612.08985] [INSPIRE].
  6. [6]
    L.F. Alday, Large spin perturbation theory for conformal field theories, Phys. Rev. Lett. 119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].
  7. [7]
    L.F. Alday, Solving CFTs with weakly broken higher spin symmetry, JHEP 10 (2017) 161 [arXiv:1612.00696] [INSPIRE].
  8. [8]
    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision islands in the Ising and O(N) models, JHEP 08 (2016) 036 [arXiv:1603.04436] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) archipelago, JHEP 11 (2015) 106 [arXiv:1504.07997] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Dey, A. Kaviraj and K. Sen, More on analytic bootstrap for O(N) models, JHEP 06 (2016) 136 [arXiv:1602.04928] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    K. Diab, L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, On C J and C T in the Gross-Neveu and O(N) models, J. Phys. A 49 (2016) 405402 [arXiv:1601.07198] [INSPIRE].
  15. [15]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].
  17. [17]
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].
  18. [18]
    K.G. Wilson and M.E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28 (1972) 240 [INSPIRE].
  19. [19]
    D. Banerjee, S. Chandrasekharan, D. Orlando and S. Reffert, Conformal dimensions in the large charge sectors at the O(4) Wilson-Fisher fixed point, Phys. Rev. Lett. 123 (2019) 051603 [arXiv:1902.09542] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Kavli Institute for the Physics and Mathematics of the Universe (WPI)The University of Tokyo Institutes for Advanced Study, The University of TokyoKashiwaJapan
  2. 2.Department of Physics, Faculty of ScienceThe University of TokyoTokyoJapan

Personalised recommendations