Transverse momentum dependent distributions in e+e and semi-inclusive deep-inelastic scattering using jets

  • Daniel Gutierrez-ReyesEmail author
  • Ignazio Scimemi
  • Wouter J. Waalewijn
  • Lorenzo Zoppi
Open Access
Regular Article - Theoretical Physics


The extraction of transverse momentum dependent distributions (TMDs) in semi-inclusive deep inelastic scattering (SIDIS) is complicated by the presence of both initial- and final-state nonperturbative physics. We recently proposed measuring jets (in- stead of hadrons) as a solution, showing that for the Winner-Take-All jet axis the same factorization formulae valid for hadrons applied to jets of arbitrary size. This amounts to simply replacing TMD fragmentation functions by our TMD jet functions. In this paper we present the calculation of these jet functions at one loop. We obtain phenomenological results for e+e dijet (Belle II, LEP) and SIDIS (HERA, EIC) with a jet, building on the arTeMiDe code. Surprisingly, we find that the limit of large jet radius describes the full R results extremely well, and we extract the two-loop jet function in this limit using Event2, allowing us to achieve N3LL accuracy. We demonstrate the perturbative convergence of our predictions and explore the kinematic dependence of the cross section. Finally, we investigate the sensitivity to nonperturbative physics, demonstrating that jets are a promising probe of proton structure.


Deep Inelastic Scattering (Phenomenology) Jets 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    D. Gutierrez-Reyes, I. Scimemi, W.J. Waalewijn and L. Zoppi, Transverse momentum dependent distributions with jets, Phys. Rev. Lett. 121 (2018) 162001 [arXiv:1807.07573] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D. Bertolini, T. Chan and J. Thaler, Jet observables without jet algorithms, JHEP 04 (2014) 013 [arXiv:1310.7584] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    E.C. Aschenauer, I. Borsa, R. Sassot and C. Van Hulse, Semi-inclusive deep-inelastic scattering, parton distributions and fragmentation functions at a future electron-ion collider, Phys. Rev. D 99 (2019) 094004 [arXiv:1902.10663] [INSPIRE].
  4. [4]
    R. Bain, Y. Makris and T. Mehen, Transverse momentum dependent fragmenting jet functions with applications to quarkonium production, JHEP 11 (2016) 144 [arXiv:1610.06508] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    Z.-B. Kang et al., J/ψ production and polarization within a jet, Phys. Rev. Lett. 119 (2017) 032001 [arXiv:1702.03287] [INSPIRE].
  6. [6]
    Z.-B. Kang, A. Prokudin, F. Ringer and F. Yuan, Collins azimuthal asymmetries of hadron production inside jets, Phys. Lett. B 774 (2017) 635 [arXiv:1707.00913] [INSPIRE].
  7. [7]
    Y. Makris, D. Neill and V. Vaidya, Probing transverse-momentum dependent evolution with groomed jets, JHEP 07 (2018) 167 [arXiv:1712.07653] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    Y. Makris and V. Vaidya, Transverse momentum spectra at threshold for groomed heavy quark jets, JHEP 10 (2018) 019 [arXiv:1807.09805] [INSPIRE].
  9. [9]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D. Neill, I. Scimemi and W.J. Waalewijn, Jet axes and universal transverse-momentum-dependent fragmentation, JHEP 04 (2017) 020 [arXiv:1612.04817] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    D. Neill, A. Papaefstathiou, W.J. Waalewijn and L. Zoppi, Phenomenology with a recoil-free jet axis: TMD fragmentation and the jet shape, JHEP 01 (2019) 067 [arXiv:1810.12915] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M.G.A. Buffing, Z.-B. Kang, K. Lee and X. Liu, A transverse momentum dependent framework for back-to-back photon+jet production, arXiv:1812.07549 [INSPIRE].
  13. [13]
    X. Liu, F. Ringer, W. Vogelsang and F. Yuan, Lepton-jet correlations in deep inelastic scattering at the electron-ion collider, Phys. Rev. Lett. 122 (2019) 192003 [arXiv:1812.08077] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    I. Scimemi and A. Vladimirov, Analysis of vector boson production within TMD factorization, Eur. Phys. J. C 78 (2018) 89 [arXiv:1706.01473] [INSPIRE].
  15. [15]
    I. Scimemi and A. Vladimirov, Systematic analysis of double-scale evolution, JHEP 08 (2018) 003 [arXiv:1803.11089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Banfi, M. Dasgupta and Y. Delenda, Azimuthal decorrelations between QCD jets at all orders, Phys. Lett. B 665 (2008) 86 [arXiv:0804.3786] [INSPIRE].
  17. [17]
    P. Sun, C.P. Yuan and F. Yuan, Soft gluon resummations in dijet azimuthal angular correlations in hadronic collisions, Phys. Rev. Lett. 113 (2014) 232001 [arXiv:1405.1105] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Sun, C.P. Yuan and F. Yuan, Transverse momentum resummation for dijet correlation in hadronic collisions, Phys. Rev. D 92 (2015) 094007 [arXiv:1506.06170] [INSPIRE].
  19. [19]
    L. Chen et al., Dijet asymmetry in the resummation improved perturbative QCD approach, Phys. Lett. B 782 (2018) 773 [arXiv:1612.04202] [INSPIRE].
  20. [20]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → Xs γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
  22. [22]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  23. [23]
    C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
  24. [24]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  25. [25]
    M.G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized transverse momentum dependent parton distribution and fragmentation functions at next-to-next-to-leading order, JHEP 09 (2016) 004 [arXiv:1604.07869] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].
  27. [27]
    T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].
  28. [28]
    J. Collins, Foundations of perturbative QCD, Cambridge University Press, Cambridge U.K. (2011).CrossRefGoogle Scholar
  29. [29]
    J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The rapidity renormalization group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A formalism for the systematic treatment of rapidity logarithms in quantum field theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    T. Gehrmann et al., Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Z.-B. Kang, F. Ringer and I. Vitev, The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production, JHEP 10 (2016) 125 [arXiv:1606.06732] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    L. Dai, C. Kim and A.K. Leibovich, Fragmentation of a jet with small radius, Phys. Rev. D 94 (2016) 114023 [arXiv:1606.07411] [INSPIRE].
  34. [34]
    M.G. Echevarria, I. Scimemi and A. Vladimirov, Transverse momentum dependent fragmentation function at next-to–next-to–leading order, Phys. Rev. D 93 (2016) 011502 [Erratum ibid. D 94 (2016) 099904] [arXiv:1509.06392] [INSPIRE].
  35. [35]
    Z.-B. Kang, F. Ringer and W.J. Waalewijn, The energy distribution of subjets and the jet shape, JHEP 07 (2017) 064 [arXiv:1705.05375] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    A.V. Manohar and I.W. Stewart, The zero-bin and mode factorization in quantum field theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].
  37. [37]
    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].
  38. [38]
    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Effective field theory for jet processes, Phys. Rev. Lett. 116 (2016) 192001 [arXiv:1508.06645] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Factorization and resummation for jet processes, JHEP 11 (2016) 019 [Erratum ibid. 05 (2017) 154] [arXiv:1605.02737] [INSPIRE].
  40. [40]
    A.J. Larkoski, I. Moult and D. Neill, Non-global logarithms, factorization and the soft substructure of jets, JHEP 09 (2015) 143 [arXiv:1501.04596] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Caron-Huot, Resummation of non-global logarithms and the BFKL equation, JHEP 03 (2018) 036 [arXiv:1501.03754] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    J.-y. Chiu et al., Soft-collinear factorization and zero-bin subtractions, Phys. Rev. D 79 (2009) 053007 [arXiv:0901.1332] [INSPIRE].
  43. [43]
    A.V. Belitsky, X. Ji and F. Yuan, Final state interactions and gauge invariant parton distributions, Nucl. Phys. B 656 (2003) 165 [hep-ph/0208038] [INSPIRE].
  44. [44]
    A. Idilbi and I. Scimemi, Singular and regular gauges in soft collinear effective theory: the introduction of the new Wilson line T, Phys. Lett. B 695 (2011) 463 [arXiv:1009.2776] [INSPIRE].
  45. [45]
    M. Garcia-Echevarria, A. Idilbi and I. Scimemi, SCET, light-cone gauge and the T-wilson lines, Phys. Rev. D 84 (2011) 011502 [arXiv:1104.0686] [INSPIRE].
  46. [46]
    M.G. Echevarŕıa, A. Idilbi and I. Scimemi, Soft and collinear factorization and transverse momentum dependent parton distribution functions, Phys. Lett. B 726 (2013) 795 [arXiv:1211.1947] [INSPIRE].
  47. [47]
    M.G. Echevarria, A. Idilbi and I. Scimemi, Unified treatment of the QCD evolution of all (un-)polarized transverse momentum dependent functions: Collins function as a study case, Phys. Rev. D 90 (2014) 014003 [arXiv:1402.0869] [INSPIRE].
  48. [48]
    A. Vladimirov, Structure of rapidity divergences in multi-parton scattering soft factors, JHEP 04 (2018) 045 [arXiv:1707.07606] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    M.G. Echevarria, I. Scimemi and A. Vladimirov, Universal transverse momentum dependent soft function at NNLO, Phys. Rev. D 93 (2016) 054004 [arXiv:1511.05590] [INSPIRE].
  50. [50]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: the nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
  51. [51]
    S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form-factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].
  52. [52]
    P.A. Baikov et al., Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A.A. Vladimirov, Correspondence between soft and rapidity anomalous dimensions, Phys. Rev. Lett. 118 (2017) 062001 [arXiv:1610.05791] [INSPIRE].
  54. [54]
    Y. Li and H.X. Zhu, Bootstrapping rapidity anomalous dimensions for transverse-momentum resummation, Phys. Rev. Lett. 118 (2017) 022004 [arXiv:1604.01404] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Vogt et al., Anomalous dimensions and splitting functions beyond the next-to-next-to-leading order, PoS(LL2018)050 [arXiv:1808.08981] [INSPIRE].
  56. [56]
    V. Bertone, I. Scimemi and A. Vladimirov, Extraction of unpolarized quark transverse momentum dependent parton distributions from Drell-Yan/Z-boson production, JHEP 06 (2019) 028 [arXiv:1902.08474] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    M.G. Echevarria, A. Idilbi, A. Schäfer and I. Scimemi, Model-independent evolution of transverse momentum dependent distribution functions (TMDs) at NNLL, Eur. Phys. J. C 73 (2013) 2636 [arXiv:1208.1281] [INSPIRE].
  58. [58]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  59. [59]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].
  60. [60]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in the proceedings of the Monte Carlo generators for HERA physics, April 27–30, Hamburg, Germany (1998), hep-ph/9907280 [INSPIRE].
  61. [61]
    S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock and B.R. Webber, New clustering algorithm for multi - jet cross-sections in e + e annihilation, Phys. Lett. B 269 (1991) 432 [INSPIRE].
  62. [62]
  63. [63]
  64. [64]
    NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
  65. [65]
    D. Gutierrez-Reyes et al., Probing transverse-momentum distributions with groomed jets, JHEP 08 (2019) 161 [arXiv:1907.05896].ADSCrossRefGoogle Scholar
  66. [66]
    G. Kramer and B. Lampe, Two jet cross-section in e + e annihilation, Z. Phys. C 34 (1987) 497 [Erratum ibid. C 42 (1989) 504] [INSPIRE].
  67. [67]
    T. Matsuura, S.C. van der Marck and W.L. van Neerven, The calculation of the second order soft and virtual contributions to the Drell-Yan cross-section, Nucl. Phys. B 319 (1989) 570 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization theorem for Drell-Yan at low q T and transverse momentum distributions on-the-light-cone, JHEP 07 (2012) 002 [arXiv:1111.4996] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M.G. Echevarria, T. Kasemets, P.J. Mulders and C. Pisano, QCD evolution of (un)polarized gluon TMDPDFs and the Higgs q T -distribution, JHEP 07 (2015) 158 [Erratum ibid. 05 (2017) 073] [arXiv:1502.05354] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Daniel Gutierrez-Reyes
    • 1
    Email author
  • Ignazio Scimemi
    • 1
  • Wouter J. Waalewijn
    • 2
    • 3
  • Lorenzo Zoppi
    • 2
    • 3
  1. 1.Departamento de Física TeóricaUniversidad Complutense de Madrid (UCM) and IPARCOSMadridSpain
  2. 2.Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Nikhef, Theory GroupAmsterdamThe Netherlands

Personalised recommendations