Advertisement

Excitations of the Myers-Perry black holes

  • Oleg LuninEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We demonstrate separability of the dynamical equations for all p-form fluxes in the Myers-Perry-(A)dS geometry, extending the earlier results for electromagnetic field. In the physically important cases of p = (1–4), we explicitly write the ODEs governing the dynamics of separable solutions.

Keywords

Black Holes Black Holes in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    Event Horizon Telescope collaboration, First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J.875 (2019) L1 [arXiv:1906.11238] [INSPIRE].
  2. [2]
    LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett.116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
  3. [3]
    LIGO Scientific and Virgo collaborations, GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett.116 (2016) 241103 [arXiv:1606.04855] [INSPIRE].
  4. [4]
    LIGO Scientific and Virgo collaborations, GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett.118 (2017) 221101 [Erratum ibid.121 (2018) 129901] [arXiv:1706.01812] [INSPIRE].
  5. [5]
    LIGO Scientific and Virgo collaborations, GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett.119 (2017) 141101 [arXiv:1709.09660] [INSPIRE].
  6. [6]
    LIGO Scientific and Virgo collaborations, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett.119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
  7. [7]
    C.F. Gammie, J.C. McKinney and G. Toth, HARM: A Numerical scheme for general relativistic magnetohydrodynamics, Astrophys. J.589 (2003) 444 [astro-ph/0301509] [INSPIRE].
  8. [8]
    J.C. McKinney, A. Tchekhovskoy and R.D. Blandford, General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes, Mon. Not. Roy. Astron. Soc.423 (2012) 3083 [arXiv:1201.4163] [INSPIRE].
  9. [9]
    R. Narayan, A. Sadowski, R.F. Penna and A.K. Kulkarni, GRMHD Simulations of Magnetized Advection Dominated Accretion on a Non-Spinning Black Hole: Outflows and Convection, Mon. Not. Roy. Astron. Soc.426 (2012) 3241 [arXiv:1206.1213] [INSPIRE].
  10. [10]
    A. Sadowski, R. Narayan, J.C. McKinney and A. Tchekhovskoy, Numerical simulations of super-critical black hole accretion flows in general relativity, Mon. Not. Roy. Astron. Soc.439 (2014) 503 [arXiv:1311.5900] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Pretorius, Evolution of binary black hole spacetimes, Phys. Rev. Lett.95 (2005) 121101 [gr-qc/0507014] [INSPIRE].
  12. [12]
    J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, J.R. van Meter and M.C. Miller, Getting a kick out of numerical relativity, Astrophys. J.653 (2006) L93 [astro-ph/0603204] [INSPIRE].
  13. [13]
    J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz and J. van Meter, Gravitational wave extraction from an inspiraling configuration of merging black holes, Phys. Rev. Lett.96 (2006) 111102 [gr-qc/0511103] [INSPIRE].
  14. [14]
    M. Boyle et al., High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions, Phys. Rev.D 76 (2007) 124038 [arXiv:0710.0158] [INSPIRE].
  15. [15]
    L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Rel.17 (2014) 2 [arXiv:1310.1528] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    S.A. Teukolsky, Rotating black holes: separable wave equations for gravitational and electromagnetic perturbations, Phys. Rev. Lett.29 (1972) 1114 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.A. Teukolsky, Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J.185 (1973) 635 [INSPIRE].
  18. [18]
    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE].
  19. [19]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett.B 379 (1996) 99 [hep-th/9601029] [INSPIRE].
  20. [20]
    J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett.B 391 (1997) 93 [hep-th/9602065] [INSPIRE].
  21. [21]
    J.C. Breckenridge, D.A. Lowe, R.C. Myers, A.W. Peet, A. Strominger and C. Vafa, Macroscopic and microscopic entropy of near extremal spinning black holes, Phys. Lett.B 381 (1996) 423 [hep-th/9603078] [INSPIRE].
  22. [22]
    C.G. Callan and J.M. Maldacena, D-brane approach to black hole quantum mechanics, Nucl. Phys.B 472 (1996) 591 [hep-th/9602043] [INSPIRE].
  23. [23]
    G.T. Horowitz and A. Strominger, Counting states of near extremal black holes, Phys. Rev. Lett.77 (1996) 2368 [hep-th/9602051] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.M. Maldacena and L. Susskind, D-branes and fat black holes, Nucl. Phys.B 475 (1996) 679 [hep-th/9604042] [INSPIRE].
  25. [25]
    S.S. Gubser and I.R. Klebanov, Emission of charged particles from four-dimensional and five-dimensional black holes, Nucl. Phys.B 482 (1996) 173 [hep-th/9608108] [INSPIRE].
  26. [26]
    S.S. Gubser and I.R. Klebanov, Four-dimensional grey body factors and the effective string, Phys. Rev. Lett.77 (1996) 4491 [hep-th/9609076] [INSPIRE].
  27. [27]
    I.R. Klebanov and S.D. Mathur, Black hole grey body factors and absorption of scalars by effective strings, Nucl. Phys.B 500 (1997) 115 [hep-th/9701187] [INSPIRE].
  28. [28]
    I.R. Klebanov, World volume approach to absorption by nondilatonic branes, Nucl. Phys.B 496 (1997) 231 [hep-th/9702076] [INSPIRE].
  29. [29]
    S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, String theory and classical absorption by three-branes, Nucl. Phys.B 499 (1997) 217 [hep-th/9703040] [INSPIRE].
  30. [30]
    M. Krasnitz and I.R. Klebanov, Testing effective string models of black holes with fixed scalars, Phys. Rev.D 56 (1997) 2173 [hep-th/9703216] [INSPIRE].
  31. [31]
    S.S. Gubser and I.R. Klebanov, Absorption by branes and Schwinger terms in the world volume theory, Phys. Lett.B 413 (1997) 41 [hep-th/9708005] [INSPIRE].
  32. [32]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  34. [34]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys.2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  35. [35]
    R.C. Myers and M.J. Perry, Black Holes in Higher Dimensional Space-Times, Annals Phys.172 (1986) 304 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    B. Carter, Global structure of the Kerr family of gravitational fields, Phys. Rev.174 (1968) 1559 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations, Commun. Math. Phys.10 (1968) 280 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Walker and R. Penrose, On quadratic first integrals of the geodesic equations for type [22] spacetimes, Commun. Math. Phys.18 (1970) 265 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    Z.W. Chong, G.W. Gibbons, H. Lü and C.N. Pope, Separability and Killing tensors in Kerr-Taub-NUT-de Sitter metrics in higher dimensions, Phys. Lett.B 609 (2005) 124 [hep-th/0405061] [INSPIRE].
  40. [40]
    M. Vasudevan, K.A. Stevens and D.N. Page, Separability of the Hamilton-Jacobi and Klein-Gordon equations in Kerr-de Sitter metrics, Class. Quant. Grav.22 (2005) 339 [gr-qc/0405125] [INSPIRE].
  41. [41]
    W. Chen, H. Lü and C.N. Pope, Separability in cohomogeneity-2 Kerr-NUT-AdS metrics, JHEP04 (2006) 008 [hep-th/0602084] [INSPIRE].
  42. [42]
    V.P. Frolov and D. Kubiznak, Hidden Symmetries of Higher Dimensional Rotating Black Holes, Phys. Rev. Lett.98 (2007) 011101 [gr-qc/0605058] [INSPIRE].
  43. [43]
    D.N. Page, D. Kubiznak, M. Vasudevan and P. Krtous, Complete integrability of geodesic motion in general Kerr-NUT-AdS spacetimes, Phys. Rev. Lett.98 (2007) 061102 [hep-th/0611083] [INSPIRE].
  44. [44]
    V.P. Frolov, P. Krtous and D. Kubiznak, Separability of Hamilton-Jacobi and Klein-Gordon Equations in General Kerr-NUT-AdS Spacetimes, JHEP02 (2007) 005 [hep-th/0611245] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    P. Krtous, D. Kubiznak, D.N. Page and V.P. Frolov, Killing-Yano Tensors, Rank-2 Killing Tensors and Conserved Quantities in Higher Dimensions, JHEP02 (2007) 004 [hep-th/0612029] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    V.P. Frolov and D. Kubiznak, Higher-Dimensional Black Holes: Hidden Symmetries and Separation of Variables, Class. Quant. Grav.25 (2008) 154005 [arXiv:0802.0322] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    P. Krtous, V.P. Frolov and D. Kubiznak, Hidden Symmetries of Higher Dimensional Black Holes and Uniqueness of the Kerr-NUT-(A)dS spacetime, Phys. Rev.D 78 (2008) 064022 [arXiv:0804.4705] [INSPIRE].
  48. [48]
    M. Cariglia, P. Krtous and D. Kubiznak, Commuting symmetry operators of the Dirac equation, Killing-Yano and Schouten-Nijenhuis brackets, Phys. Rev.D 84 (2011) 024004 [arXiv:1102.4501] [INSPIRE].
  49. [49]
    M. Cariglia, P. Krtous and D. Kubiznak, Dirac Equation in Kerr-NUT-(A)dS Spacetimes: Intrinsic Characterization of Separability in All Dimensions, Phys. Rev.D 84 (2011) 024008 [arXiv:1104.4123] [INSPIRE].
  50. [50]
    D. Kubiznak and M. Cariglia, On Integrability of spinning particle motion in higher-dimensional black hole spacetimes, Phys. Rev. Lett.108 (2012) 051104 [arXiv:1110.0495] [INSPIRE].
  51. [51]
    D. Kubiznak, H.K. Kunduri and Y. Yasui, Generalized Killing-Yano equations in D = 5 gauged supergravity, Phys. Lett.B 678 (2009) 240 [arXiv:0905.0722] [INSPIRE].
  52. [52]
    T. Houri, D. Kubiznak, C.M. Warnick and Y. Yasui, Generalized hidden symmetries and the Kerr-Sen black hole, JHEP07 (2010) 055 [arXiv:1004.1032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    D. Kubiznak, C.M. Warnick and P. Krtous, Hidden symmetry in the presence of fluxes, Nucl. Phys.B 844 (2011) 185 [arXiv:1009.2767] [INSPIRE].
  54. [54]
    V. Frolov, P. Krtous and D. Kubiznak, Black holes, hidden symmetries and complete integrability, Living Rev. Rel.20 (2017) 6 [arXiv:1705.05482] [INSPIRE].
  55. [55]
    F. De Jonghe, K. Peeters and K. Sfetsos, Killing-Yano supersymmetry in string theory, Class. Quant. Grav.14 (1997) 35 [hep-th/9607203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    M. Cvetǐc and F. Larsen, General rotating black holes in string theory: Grey body factors and event horizons, Phys. Rev.D 56 (1997) 4994 [hep-th/9705192] [INSPIRE].
  57. [57]
    M. Cvetǐc and F. Larsen, Grey body factors for rotating black holes in four-dimensions, Nucl. Phys.B 506 (1997) 107 [hep-th/9706071] [INSPIRE].
  58. [58]
    C. Keeler and F. Larsen, Separability of Black Holes in String Theory, JHEP10 (2012) 152 [arXiv:1207.5928] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    Y. Chervonyi and O. Lunin, (Non)-Integrability of Geodesics in D-brane Backgrounds, JHEP02 (2014) 061 [arXiv:1311.1521] [INSPIRE].
  60. [60]
    Y. Chervonyi and O. Lunin, Killing(-Yano) Tensors in String Theory, JHEP09 (2015) 182 [arXiv:1505.06154] [INSPIRE].
  61. [61]
    G.W. Gibbons, H. Lü, D.N. Page and C.N. Pope, The General Kerr-de Sitter metrics in all dimensions, J. Geom. Phys.53 (2005) 49 [hep-th/0404008] [INSPIRE].
  62. [62]
    D.D.K. Chow, M. Cvetǐc, H. Lü and C.N. Pope, Extremal Black Hole/CFT Correspondence in (Gauged) Supergravities, Phys. Rev.D 79 (2009) 084018 [arXiv:0812.2918] [INSPIRE].
  63. [63]
    D. Kastor, S. Ray and J. Traschen, Enthalpy and the Mechanics of AdS Black Holes, Class. Quant. Grav.26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].
  64. [64]
    M. Cvetǐc, G.W. Gibbons and C.N. Pope, Universal Area Product Formulae for Rotating and Charged Black Holes in Four and Higher Dimensions, Phys. Rev. Lett.106 (2011) 121301 [arXiv:1011.0008] [INSPIRE].
  65. [65]
    M. Cvetǐc, G.W. Gibbons, D. Kubiznak and C.N. Pope, Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume, Phys. Rev.D 84 (2011) 024037 [arXiv:1012.2888] [INSPIRE].
  66. [66]
    D. Yoshida and J. Soda, Quasinormal modes of p-forms in spherical black holes, Phys. Rev.D 99 (2019) 044054 [arXiv:1901.07723] [INSPIRE].
  67. [67]
    H. Kodama and A. Ishibashi, A Master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions, Prog. Theor. Phys.110 (2003) 701 [hep-th/0305147] [INSPIRE].
  68. [68]
    A. Ishibashi and H. Kodama, Stability of higher dimensional Schwarzschild black holes, Prog. Theor. Phys.110 (2003) 901 [hep-th/0305185] [INSPIRE].
  69. [69]
    H. Kodama and A. Ishibashi, Master equations for perturbations of generalized static black holes with charge in higher dimensions, Prog. Theor. Phys.111 (2004) 29 [hep-th/0308128] [INSPIRE].
  70. [70]
    A.S. Cornell, W. Naylor and M. Sasaki, Graviton emission from a higher-dimensional black hole, JHEP02 (2006) 012 [hep-th/0510009] [INSPIRE].
  71. [71]
    V. Cardoso, M. Cavaglia and L. Gualtieri, Black Hole Particle Emission in Higher-Dimensional Spacetimes, Phys. Rev. Lett.96 (2006) 071301 [Erratum ibid.96 (2006) 219902] [hep-th/0512002] [INSPIRE].
  72. [72]
    O.J.C. Dias, G.T. Horowitz, D. Marolf and J.E. Santos, On the Nonlinear Stability of Asymptotically Anti-de Sitter Solutions, Class. Quant. Grav.29 (2012) 235019 [arXiv:1208.5772] [INSPIRE].
  73. [73]
    O. Lunin, Maxwell’s equations in the Myers-Perry geometry, JHEP12 (2017) 138 [arXiv:1708.06766] [INSPIRE].
  74. [74]
    V.P. Frolov, P. Krtoǔs and D. Kubizňàk, Separation of variables in Maxwell equations in Plebański-Demiański spacetime, Phys. Rev.D 97 (2018) 101701 [arXiv:1802.09491] [INSPIRE].
  75. [75]
    P. Krtoǔs, V.P. Frolov and D. Kubizňàk, Separation of Maxwell equations in Kerr-NUT-(A)dS spacetimes, Nucl. Phys.B 934 (2018) 7 [arXiv:1803.02485] [INSPIRE].
  76. [76]
    V.P. Frolov, P. Krtoǔs, D. Kubizňàk and J.E. Santos, Massive Vector Fields in Rotating Black-Hole Spacetimes: Separability and Quasinormal Modes, Phys. Rev. Lett.120 (2018) 231103 [arXiv:1804.00030] [INSPIRE].
  77. [77]
    V.P. Frolov and P. Krtoǔs, Duality and μ separability of Maxwell equations in Kerr-NUT-(A)dS spacetimes, Phys. Rev.D 99 (2019) 044044 [arXiv:1812.08697] [INSPIRE].
  78. [78]
    S.R. Dolan, Electromagnetic fields on Kerr spacetime, Hertz potentials and Lorenz gauge, Phys. Rev.D 100 (2019) 044044 [arXiv:1906.04808] [INSPIRE].
  79. [79]
    R. Cayuso, F. Gray, D. Kubizňàk, A. Margalit, R. Gomes Souza and L. Thiele, Principal Tensor Strikes Again: Separability of Vector Equations with Torsion, Phys. Lett.B 795 (2019) 650 [arXiv:1906.10072] [INSPIRE].
  80. [80]
    R.C. Myers, Myers-Perry black holes, in Black holes in higher dimensions, arXiv:1111.1903 [INSPIRE].
  81. [81]
    K. Yano, Some Remarks on Tensor Fields and Curvature, Annals Math.55 (1952) 328.Google Scholar
  82. [82]
    S. Tachibana, On conformal Killing tensor in a Riemannian space, Tohoku Math. J.21 (1969) 56.MathSciNetCrossRefGoogle Scholar
  83. [83]
    T. Kashiwada, On conformal Killing tensor, Nat. Sci. Rep. Ochanomizu University19 (1968) 68.MathSciNetzbMATHGoogle Scholar
  84. [84]
    J. Barragán Amado, B. Carneiro Da Cunha and E. Pallante, Scalar quasinormal modes of Kerr-AdS5 , Phys. Rev.D 99 (2019) 105006 [arXiv:1812.08921] [INSPIRE].
  85. [85]
    B. Carneiro da Cunha and J.P. Cavalcante, Confluent conformal blocks and the Teukolsky master equation, arXiv:1906.10638 [INSPIRE].
  86. [86]
    J.H. Schwarz, Covariant Field Equations of Chiral N = 2 D = 10 Supergravity, Nucl. Phys.B 226 (1983) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    J.H. Schwarz and P.C. West, Symmetries and Transformations of Chiral N = 2 D = 10 Supergravity, Phys. Lett.126B (1983) 301 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  88. [88]
    P.S. Howe and P.C. West, The Complete N = 2, D = 10 Supergravity, Nucl. Phys.B 238 (1984) 181 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    P. Krtous, D. Kubiznak, D.N. Page and M. Vasudevan, Constants of geodesic motion in higher-dimensional black-hole spacetimes, Phys. Rev.D 76 (2007) 084034 [arXiv:0707.0001] [INSPIRE].
  90. [90]
    T. Houri, T. Oota and Y. Yasui, Closed conformal Killing-Yano tensor and geodesic integrability, J. Phys.A 41 (2008) 025204 [arXiv:0707.4039] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  91. [91]
    T. Houri, T. Oota and Y. Yasui, Closed conformal Killing-Yano tensor and Kerr-NUT-de Sitter spacetime uniqueness, Phys. Lett.B 656 (2007) 214 [arXiv:0708.1368] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  92. [92]
    T. Houri, T. Oota and Y. Yasui, Closed conformal Killing-Yano tensor and uniqueness of generalized Kerr-NUT-de Sitter spacetime, Class. Quant. Grav.26 (2009) 045015 [arXiv:0805.3877] [INSPIRE].
  93. [93]
    J. Polchinski and M.J. Strassler, The String dual of a confining four-dimensional gauge theory, hep-th/0003136 [INSPIRE].
  94. [94]
    A.P. Polychronakos and K. Sfetsos, Solving field equations in non-isometric coset CFT backgrounds, Nucl. Phys.B 840 (2010) 534 [arXiv:1006.2386] [INSPIRE].
  95. [95]
    A.P. Polychronakos and K. Sfetsos, High spin limits and non-abelian T-duality, Nucl. Phys.B 843 (2011) 344 [arXiv:1008.3909] [INSPIRE].
  96. [96]
    O. Lunin and W. Tian, Scalar fields on λ-deformed cosets, Nucl. Phys.B 938 (2019) 671 [arXiv:1808.02971] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity at Albany (SUNY)AlbanyU.S.A.

Personalised recommendations