Hydrodynamics of massless integrable RG flows and a non-equilibrium c-theorem

  • D. X. HorváthEmail author
Open Access
Regular Article - Theoretical Physics


We study Euler scale hydrodynamics of massless integrable quantum field theories interpolating between two non-trivial renormalisation group fixed points after inhomogeneous quantum quenches. Using a partitioning protocol with left and right initial thermal states and the recently developed framework of generalised hydrodynamics, we focus on current and density profiles for the energy and momentum as a function of ξ = x/t, where both x and t are sent to infinity. Studying the first few members of the An and Dn massless flows we carry out a systematic treatment of these series and generalise our results to other unitary massless models.

In our analysis we find that the profiles exhibit extended plateaux and that non-trivial bounds exist for the energy and momentum densities and currents in the non-equilibrium stationary state, i.e. when ξ = 0. To quantify the magnitude of currents and densities, dynamical central charges are defined and it is shown that the dynamical central charge for the energy current satisfies a certain monotonicity property. We discuss the connection of the Landauer-Büttiker formalism of transport with our results and show that this picture can account for some of the bounds for the currents and for the monotonicity of the dynamical central charge. These properties are shown to be present not only in massless flows but also in the massive sinh-Gordon model suggesting their general validity and the correctness of the Landauer-Büttiker interpretation of transport in integrable field theories. Our results thus imply the existence of a non-equilibrium c-theorem as well, at least in integrable models. Finally we also study the interesting low energy behaviour of the A2 model that corresponds to the massless flow from the tricritical to the critical Ising field theory.


Integrable Field Theories Renormalization Group Bethe Ansatz Conformal Field Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    T. Kinoshita, T. Wenger and D.S. Weiss, A quantum Newton’s cradle, Nature440 (2006) 900.ADSCrossRefGoogle Scholar
  2. [2]
    S. Trotzky et al., Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas, Nature Phys.8 (2012) 325 [arXiv:1101.2659].ADSCrossRefGoogle Scholar
  3. [3]
    M. Gring et al., Relaxation and Prethermalization in an Isolated Quantum System, Science337 (2012) 1318 [arXiv:1112.0013].ADSCrossRefGoogle Scholar
  4. [4]
    T. Langen et al., Experimental observation of a generalized Gibbs ensemble, Science348 (2015) 207 [arXiv:1411.7185].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm and J. Schmiedmayer, Non-equilibrium coherence dynamics in one-dimensional Bose gases, Nature449 (2007) 324 [arXiv:0706.2259].ADSCrossRefGoogle Scholar
  6. [6]
    T. Langen, R. Geiger, M. Kuhnert, B. Rauer and J. Schmiedmayer, Local emergence of thermal correlations in an isolated quantum many-body system, Nature Phys.9 (2013) 640 [arXiv:1305.3708].ADSCrossRefGoogle Scholar
  7. [7]
    F. Meinert et al., Quantum Quench in an Atomic One-Dimensional Ising Chain, Phys. Rev. Lett.111 (2013) 053003 [arXiv:1304.2628].ADSCrossRefGoogle Scholar
  8. [8]
    T. Fukuhara et al., Microscopic observation of magnon bound states and their dynamics, Nature502 (2013) 76 [arXiv:1305.6598].ADSCrossRefGoogle Scholar
  9. [9]
    A.M. Kaufman et al., Quantum thermalization through entanglement in an isolated many-body system, Science353 (2016) 794 [arXiv:1603.04409].ADSCrossRefGoogle Scholar
  10. [10]
    M. Cheneau et al., Light-cone-like spreading of correlations in a quantum many-body system, Nature481 (2012) 484 [arXiv:1111.0776].ADSCrossRefGoogle Scholar
  11. [11]
    P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett.96 (2006) 136801 [cond-mat/0601225] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P. Calabrese and J. Cardy, Quantum Quenches in Extended Systems, J. Stat. Mech.0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  13. [13]
    M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of 1D Lattice Hard-Core Bosons, Phys. Rev. Lett.98 (2007) 050405 [cond-mat/0604476].ADSCrossRefGoogle Scholar
  14. [14]
    A.C. Cassidy, C.W. Clark and M. Rigol, Generalized Thermalization in an Integrable Lattice System, Phys. Rev. Lett.106 (2011) 140405 [arXiv:1008.4794].ADSCrossRefGoogle Scholar
  15. [15]
    B. Pozsgay, Mean values of local operators in highly excited Bethe states, J. Stat. Mech.1101 (2011) P01011 [arXiv:1009.4662] [INSPIRE].MathSciNetGoogle Scholar
  16. [16]
    B. Wouters, J. De Nardis, M. Brockmann, D. Fioretto, M. Rigol and J.-S. Caux, Quenching the Anisotropic Heisenberg Chain: Exact Solution and Generalized Gibbs Ensemble Predictions, Phys. Rev. Lett.113 (2014) 117202 [arXiv:1405.0172].ADSCrossRefGoogle Scholar
  17. [17]
    B. Pozsgay, M. Mestyán, M.A. Werner, M. Kormos, G. Zaránd and G. Takács, Correlations after Quantum Quenches in the XXZ Spin Chain: Failure of the Generalized Gibbs Ensemble, Phys. Rev. Lett.113 (2014) 117203 [arXiv:1405.2843].ADSCrossRefGoogle Scholar
  18. [18]
    B. Pozsgay, Failure of the generalized eigenstate thermalization hypothesis in integrable models with multiple particle species, J. Stat. Mech.9 (2014) 09026 [arXiv:1406.4613].MathSciNetGoogle Scholar
  19. [19]
    G. Goldstein and N. Andrei, Failure of the local generalized Gibbs ensemble for integrable models with bound states, Phys. Rev.A 90 (2014) 043625 [arXiv:1405.4224].ADSCrossRefGoogle Scholar
  20. [20]
    F.H.L. Essler, G. Mussardo and M. Panfil, Generalized Gibbs Ensembles for Quantum Field Theories, Phys. Rev.A 91 (2015) 051602 [arXiv:1411.5352] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux, F.H.L. Essler and T. Prosen, Complete Generalized Gibbs Ensembles in an Interacting Theory, Physical Review Letters115 (2015) 157201 [arXiv:1507.02993].ADSCrossRefGoogle Scholar
  22. [22]
    M. Mestyan, B. Pozsgay, G. Takacs and M.A. Werner, Quenching the XXZ spin chain: quench action approach versus generalized Gibbs ensemble, J. Stat. Mech.4 (2015) 04001 [arXiv:1412.4787].MathSciNetGoogle Scholar
  23. [23]
    E. Ilievski, E. Quinn, J. De Nardis and M. Brockmann, String-charge duality in integrable lattice models, J. Stat. Mech.1606 (2016) 063101 [arXiv:1512.04454] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  24. [24]
    B. Pozsgay, E. Vernier and M.A. Werner, On generalized Gibbs ensembles with an infinite set of conserved charges, J. Stat. Mech.9 (2017) 093103 [arXiv:1703.09516].MathSciNetCrossRefGoogle Scholar
  25. [25]
    E. Ilievski, E. Quinn and J.-S. Caux, From interacting particles to equilibrium statistical ensembles, Phys. Rev.B 95 (2017) 115128 [arXiv:1610.06911] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    L. Piroli, B. Pozsgay and E. Vernier, What is an integrable quench?, Nucl. Phys.B 925 (2017) 362 [arXiv:1709.04796] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    E. Ilievski, M. Medenjak, T. Prosen and L. Zadnik, Quasilocal charges in integrable lattice systems, J. Stat. Mech.1606 (2016) 064008 [arXiv:1603.00440] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  28. [28]
    T. Platini and D. Karevski, Scaling and front dynamics in Ising quantum chains, Eur. Phys. J. B 48 (2005) 225 [cond-mat/0509594].ADSCrossRefGoogle Scholar
  29. [29]
    A. De Luca, J. Viti, D. Bernard and B. Doyon, Nonequilibrium thermal transport in the quantum Ising chain, Phys. Rev.B 88 (2013) 134301 [arXiv:1305.4984] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Collura and D. Karevski, Quantum quench from a thermal tensor state: Boundary effects and generalized Gibbs ensemble, Phys. Rev.B 89 (2014) 214308 [arXiv:1402.1944].ADSCrossRefGoogle Scholar
  31. [31]
    J. Viti, J.-M. Stéphan, J. Dubail and M. Haque, Inhomogeneous quenches in a free fermionic chain: Exact results, EPL115 (2016) 40011 [arXiv:1507.08132] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Biella, A. De Luca, J. Viti, D. Rossini, L. Mazza and R. Fazio, Energy transport between two integrable spin chains, Phys. Rev.B 93 (2016) 205121 [arXiv:1602.05357].ADSCrossRefGoogle Scholar
  33. [33]
    M. Fagotti, Higher-order generalized hydrodynamics in one dimension: The noninteracting test, Phys. Rev.B 96 (2017) 220302 [arXiv:1708.05383] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Kormos, Inhomogeneous quenches in the transverse field Ising chain: scaling and front dynamics, SciPost Phys.3 (2017) 020 [arXiv:1704.03744].ADSCrossRefGoogle Scholar
  35. [35]
    G. Perfetto and A. Gambassi, Ballistic front dynamics after joining two semi-infinite quantum Ising chains, Phys. Rev.E 96 (2017) 012138 [arXiv:1704.03437] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    M. Kormos, C.P. Moca and G. Zaránd, Semiclassical theory of front propagation and front equilibration following an inhomogeneous quantum quench, Phys. Rev.E 98 (2018) 032105 [arXiv:1712.09466] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    B. Doyon, J. Dubail, R. Konik and T. Yoshimura, Large-Scale Description of Interacting One-Dimensional Bose Gases: Generalized Hydrodynamics Supersedes Conventional Hydrodynamics, Phys. Rev. Lett.119 (2017) 195301 [arXiv:1704.04151] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    V.B. Bulchandani, R. Vasseur, C. Karrasch and J.E. Moore, Solvable Hydrodynamics of Quantum Integrable Systems, Phys. Rev. Lett.119 (2017) 220604 [arXiv:1704.03466].ADSCrossRefGoogle Scholar
  39. [39]
    J.-S. Caux, B. Doyon, J. Dubail, R. Konik and T. Yoshimura, Hydrodynamics of the interacting Bose gas in the Quantum Newton Cradle setup, arXiv:1711.00873.
  40. [40]
    M. Schemmer, I. Bouchoule, B. Doyon and J. Dubail, Generalized Hydrodynamics on an Atom Chip, Phys. Rev. Lett.122 (2019) 090601 [arXiv:1810.07170].ADSCrossRefGoogle Scholar
  41. [41]
    P. Ruggiero, Y. Brun and J. Dubail, Conformal field theory on top of a breathing one-dimensional gas of hard core bosons, SciPost Phys.6 (2019) 051 [arXiv:1901.08132] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    O.A. Castro-Alvaredo, B. Doyon and T. Yoshimura, Emergent hydrodynamics in integrable quantum systems out of equilibrium, Phys. Rev.X 6 (2016) 041065 [arXiv:1605.07331] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    B. Bertini, M. Collura, J. De Nardis and M. Fagotti, Transport in Out-of-Equilibrium X X Z Chains: Exact Profiles of Charges and Currents, Phys. Rev. Lett.117 (2016) 207201 [arXiv:1605.09790] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    B. Doyon and T. Yoshimura, A note on generalized hydrodynamics: inhomogeneous fields and other concepts, SciPost Phys.2 (2017) 014 [arXiv:1611.08225] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    L. Piroli, J. De Nardis, M. Collura, B. Bertini and M. Fagotti, Transport in out-of-equilibrium XXZ chains: Nonballistic behavior and correlation functions, Phys. Rev. B 96 (2017) 115124 [arXiv:1706.00413] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. De Luca, M. Collura and J. De Nardis, Nonequilibrium spin transport in integrable spin chains: Persistent currents and emergence of magnetic domains, Phys. Rev.B 96 (2017) 020403 [arXiv:1612.07265].CrossRefGoogle Scholar
  47. [47]
    E. Ilievski and J. De Nardis, Ballistic transport in the one-dimensional Hubbard model: The hydrodynamic approach, Phys. Rev.B 96 (2017) 081118 [arXiv:1706.05931] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Collura, A. De Luca and J. Viti, Analytic solution of the domain-wall nonequilibrium stationary state, Phys. Rev.B 97 (2018) 081111 [arXiv:1707.06218] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    V. Alba, Entanglement and quantum transport in integrable systems, Phys. Rev.B 97 (2018) 245135 [arXiv:1706.00020] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    B. Bertini and L. Piroli, Low-temperature transport in out-of-equilibrium XXZ chains, J. Stat. Mech.1803 (2018) 033104 [arXiv:1711.00519] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  51. [51]
    V.B. Bulchandani, R. Vasseur, C. Karrasch and J.E. Moore, Bethe-Boltzmann hydrodynamics and spin transport in the XXZ chain, Phys. Rev.B 97 (2018) 045407 [arXiv:1702.06146] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    A. Bastianello and A. De Luca, Integrability-Protected Adiabatic Reversibility in Quantum Spin Chains, Phys. Rev. Lett.122 (2019) 240606 [arXiv:1811.07922] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    B. Doyon and H. Spohn, Dynamics of hard rods with initial domain wall state, J. Stat. Mech.1707 (2017) 073210 [arXiv:1703.05971] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  54. [54]
    X. Cao, V.B. Bulchandani and J.E. Moore, Incomplete Thermalization from Trap-Induced Integrability Breaking: Lessons from Classical Hard Rods, Phys. Rev. Lett.120 (2018) 164101 [arXiv:1710.09330] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Bastianello, B. Doyon, G. Watts and T. Yoshimura, Generalized hydrodynamics of classical integrable field theory: the sinh-Gordon model, SciPost Phys.4 (2018) 045 [arXiv:1712.05687] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    B. Doyon, Generalised hydrodynamics of the classical Toda system, J. Math. Phys.60 (2019) 073302 [arXiv:1902.07624] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    M. Márton, B. Bertini, L. Piroli and P. Calabrese, Spin-charge separation effects in the low-temperature transport of one-dimensional Fermi gases, Phys. Rev.B 99 (2019) 014305 [arXiv:1810.01089].ADSGoogle Scholar
  58. [58]
    B. Bertini, L. Piroli and M. Kormos, Transport in the sine-Gordon field theory: from generalized hydrodynamics to semiclassics, Phys. Rev.B 100 (2019) 035108 [arXiv:1904.02696] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    B. Doyon, H. Spohn and T. Yoshimura, A geometric viewpoint on generalized hydrodynamics, Nucl. Phys.926 (2018) 570 [arXiv:1704.04409] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    B. Doyon, T. Yoshimura and J.-S. Caux, Soliton Gases and Generalized Hydrodynamics, Phys. Rev. Lett.120 (2018) 045301 [arXiv:1704.05482] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M. Mestyán and V. Alba, Molecular dynamics simulation of entanglement spreading in generalized hydrodynamics, arXiv:1905.03206 [INSPIRE].
  62. [62]
    J. Myers, M.J. Bhaseen, R.J. Harris and B. Doyon, Transport fluctuations in integrable models out of equilibrium, arXiv:1812.02082.
  63. [63]
    B. Doyon and J. Myers, Fluctuations in ballistic transport from Euler hydrodynamics, arXiv:1902.00320 [INSPIRE].
  64. [64]
    J. De Nardis, D. Bernard and B. Doyon, Hydrodynamic Diffusion in Integrable Systems, Phys. Rev. Lett.121 (2018) 160603 [arXiv:1807.02414] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  65. [65]
    S. Gopalakrishnan and R. Vasseur, Kinetic Theory of Spin Diffusion and Superdiffusion in XXZ Spin Chains, Phys. Rev. Lett.122 (2019) 127202 [arXiv:1812.02701].ADSCrossRefGoogle Scholar
  66. [66]
    J. De Nardis, D. Bernard and B. Doyon, Diffusion in generalized hydrodynamics and quasiparticle scattering, SciPost Phys.6 (2019) 049 [arXiv:1812.00767] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys.B 241 (1984) 333 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    S. Sotiriadis and J. Cardy, Inhomogeneous Quantum Quenches, arXiv:0808.0116 [INSPIRE].
  69. [69]
    D. Bernard and B. Doyon, Energy flow in non-equilibrium conformal field theory, J. Phys.A 45 (2012) 362001 [arXiv:1202.0239] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  70. [70]
    D. Bernard and B. Doyon, Non-Equilibrium Steady States in Conformal Field Theory, Annales Henri Poincaré16 (2015) 113 [arXiv:1302.3125] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    B. Doyon, M. Hoogeveen and D. Bernard, Energy flow and fluctuations in non-equilibrium conformal field theory on star graphs, J. Stat. Mech.1403 (2014) P03002 [arXiv:1306.3192] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  72. [72]
    D. Bernard and B. Doyon, A hydrodynamic approach to non-equilibrium conformal field theories, J. Stat. Mech.1603 (2016) 033104 [arXiv:1507.07474] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  73. [73]
    A. Lucas, K. Schalm, B. Doyon and M.J. Bhaseen, Shock waves, rarefaction waves and nonequilibrium steady states in quantum critical systems, Phys. Rev.D 94 (2016) 025004 [arXiv:1512.09037] [INSPIRE].ADSMathSciNetGoogle Scholar
  74. [74]
    D. Bernard and B. Doyon, Conformal field theory out of equilibrium: a review, J. Stat. Mech.1606 (2016) 064005 [arXiv:1603.07765] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  75. [75]
    A.B. Zamolodchikov, Thermodynamic Bethe ansatz for RSOS scattering theories, Nucl. Phys.B 358 (1991) 497 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    A.B. Zamolodchikov, From tricritical Ising to critical Ising by thermodynamic Bethe ansatz, Nucl. Phys.B 358 (1991) 524 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    A.B. Zamolodchikov, TBA equations for integrable perturbed SU(2)k× SU(2)l/SU(2)k+lcoset models, Nucl. Phys.B 366 (1991) 122 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    V.A. Fateev and A.B. Zamolodchikov, Integrable perturbations of Z (N ) parafermion models and O(3) σ-model, Phys. Lett.B 271 (1991) 91 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    F. Ravanini, R. Tateo and A. Valleriani, Dynkin TBAs, Int. J. Mod. Phys.A 8 (1993) 1707 [hep-th/9207040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    G. Delfino, G. Mussardo and P. Simonetti, Correlation functions along a massless flow, Phys. Rev.D 51 (1995) 6620 [hep-th/9410117] [INSPIRE].ADSGoogle Scholar
  81. [81]
    P. Dorey, G. Siviour and G. Takács, Form factor relocalisation and interpolating renormalisation group flows from the staircase model, JHEP03 (2015) 054 [arXiv:1412.8442] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  82. [82]
    D.X. Horvath, P.E. Dorey and G. Takács, Roaming form factors for the tricritical to critical Ising flow, JHEP07 (2016) 051 [arXiv:1604.05635] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  83. [83]
    A.B. Zamolodchikov, Resonance factorized scattering and roaming trajectories, J. Phys.A 39 (2006) 12847 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  84. [84]
    M.J. Martins, Renormalization group trajectories from resonance factorized S matrices, Phys. Rev. Lett.69 (1992) 2461 [hep-th/9205024] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    P.E. Dorey and F. Ravanini, Staircase models from affine Toda field theory, Int. J. Mod. Phys.A 8 (1993) 873 [hep-th/9206052] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  86. [86]
    M.J. Martins, Analysis of asymptotic conditions in resonance functional hierarchies, Phys. Lett.B 304 (1993) 111 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    P. Dorey and F. Ravanini, Generalizing the staircase models, Nucl. Phys.B 406 (1993) 708 [hep-th/9211115] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  88. [88]
    A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett.43 (1986) 730 [INSPIRE].ADSMathSciNetGoogle Scholar
  89. [89]
    A.B. Zamolodchikov, Thermodynamic Bethe Ansatz in Relativistic Models. Scaling Three State Potts and Lee-yang Models, Nucl. Phys.B 342 (1990) 695 [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    D.-L. Vu and T. Yoshimura, Equations of state in generalized hydrodynamics, SciPost Phys.6 (2019) 023 [arXiv:1809.03197] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    B. Bertini, L. Piroli and P. Calabrese, Universal Broadening of the Light Cone in Low-Temperature Transport, Phys. Rev. Lett.120 (2018) 176801 [arXiv:1709.10096] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    O. Castro-Alvaredo, Y. Chen, B. Doyon and M. Hoogeveen, Thermodynamic Bethe ansatz for non-equilibrium steady states: exact energy current and fluctuations in integrable QFT, J. Stat. Mech.2014 (2014) P03011 [arXiv:1310.4779] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  93. [93]
    B. Doyon, Lower bounds for ballistic current and noise in non-equilibrium quantum steady states, Nucl. Phys.B 892 (2015) 190 [arXiv:1410.0292] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  94. [94]
    D.A. Kastor, E.J. Martinec and S.H. Shenker, RG Flow in N = 1 Discrete Series, Nucl. Phys.B 316 (1989) 590 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  95. [95]
    A.B. Zamolodchikov, Fractional Spin Integrals of Motion in Perturbed Conformal Field Theory, in Proceedings Conference Beijing 1989, “Fields, strings and quantum gravity”, (1989) [INSPIRE].
  96. [96]
    R. Landauer, Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction, IBM J. Res. Dev.1 (1957) 223.MathSciNetCrossRefGoogle Scholar
  97. [97]
    M. Büttiker, Four-Terminal Phase-Coherent Conductance, Phys. Rev. Lett.57 (1986) 1761.ADSCrossRefGoogle Scholar
  98. [98]
    M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors, Phys. Rev.B 38 (1988) 9375.ADSCrossRefGoogle Scholar
  99. [99]
    R. Landauer, Conductance from transmission: Common sense points, Phys. ScriptaT42 (1992) 110.ADSCrossRefGoogle Scholar
  100. [100]
    A.B. Zamolodchikov, Thermodynamics of imaginary coupled sine-Gordon: Dense polymer finite size scaling function, Phys. Lett.B 335 (1994) 436 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  101. [101]
    C. Destri and H.J. de Vega, New thermodynamic Bethe ansatz equations without strings, Phys. Rev. Lett.69 (1992) 2313 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  102. [102]
    C. Destri and H.J. De Vega, Unified approach to thermodynamic Bethe Ansatz and finite size corrections for lattice models and field theories, Nucl. Phys.B 438 (1995) 413 [hep-th/9407117] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  103. [103]
    P. Dorey, C. Dunning and R. Tateo, New families of flows between two-dimensional conformal field theories, Nucl. Phys.D 578 (2000) 699 [hep-th/0001185] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  104. [104]
    G. Feverati, F. Ravanini and G. Takács, Truncated conformal space at c = 1, nonlinear integral equation and quantization rules for multi-soliton states, Phys. Lett.B 430 (1998) 264 [hep-th/9803104] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  105. [105]
    G. Feverati, F. Ravanini and G. Takács, Scaling functions in the odd charge sector of sine-Gordon/massive Thirring theory, Phys. Lett.B 444 (1998) 442 [hep-th/9807160] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    G. Feverati, F. Ravanini and G. Takács, Nonlinear integral equation and finite volume spectrum of sine-Gordon theory, Nucl. Phys.B 540 (1999) 543 [hep-th/9805117] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  107. [107]
    G. Feverati, F. Ravanini and G. Takács, Nonlinear integral equation and finite volume spectrum of minimal models perturbed by Φ(1, 3), Nucl. Phys.B 570 (2000) 615 [hep-th/9909031] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  108. [108]
    V.A. Fateev and A.B. Zamolodchikov, Conformal Quantum Field Theory Models in Two-Dimensions Having Z (3) Symmetry, Nucl. Phys.B 280 (1987) 644 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  109. [109]
    M.J. Martins, The Thermodynamic Bethe ansatz for deformed W A N−1conformal field theories, Phys. Lett.B 277 (1992) 301 [hep-th/9201032] [INSPIRE].MathSciNetGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.MTA-BME “Momentum” Statistical Field Theory Research GroupBudapestHungary
  2. 2.Department of Theoretical PhysicsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations