Advertisement

Counting superstrata

  • Masaki ShigemoriEmail author
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

We count the number of regular supersymmetric solutions in supergravity, called superstrata, that represent non-linear completion of linear fluctuations around empty AdS3×S3. These solutions carry the same charges as the D1-D5-P black hole and represent its microstates. We estimate the entropy using thermodynamic approximation and find that it is parametrically smaller than the area-entropy of the D1-D5-P black hole. Therefore, these superstrata based on AdS3× S3 are not typical microstates of the black hole. What are missing in the superstrata based on AdS3× S3 are higher and fractional modes in the dual CFT language. We speculate on what kind of other configurations to look at as possible realization of those modes in gravity picture, such as superstrata based on other geometries, as well as other brane configurations.

Keywords

AdS-CFT Correspondence Black Holes in String Theory Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett.B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett.B 391 (1997) 93 [hep-th/9602065] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys.53 (2005) 793 [hep-th/0502050] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav.26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys.B 623 (2002) 342 [hep-th/0109154] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with angular momentum, hep-th/0212210 [INSPIRE].
  7. [7]
    M. Taylor, General 2 charge geometries, JHEP03 (2006) 009 [hep-th/0507223] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP06 (2007) 056 [arXiv:0704.0690] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    V.S. Rychkov, D1-D5 black hole microstate counting from supergravity, JHEP01 (2006) 063 [hep-th/0512053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    C. Krishnan and A. Raju, A note on D1-D5 entropy and geometric quantization, JHEP06 (2015) 054 [arXiv:1504.04330] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP11 (2006) 042 [hep-th/0608217] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    I. Bena, N. Bobev, S. Giusto, C. Ruef and N.P. Warner, An infinite-dimensional family of black-hole microstate geometries, JHEP03 (2011) 022 [Erratum ibid.04 (2011) 059] [arXiv:1006.3497] [INSPIRE].
  13. [13]
    P. Heidmann, Four-center bubbled BPS solutions with a Gibbons-Hawking base, JHEP10 (2017) 009 [arXiv:1703.10095] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    I. Bena, P. Heidmann and P.F. Ramirez, A systematic construction of microstate geometries with low angular momentum, JHEP10 (2017) 217 [arXiv:1709.02812] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev.D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP06 (2006) 007 [hep-th/0505167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructing ‘hair’ for the three charge hole, Nucl. Phys.B 680 (2004) 415 [hep-th/0311092] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    O. Lunin, Adding momentum to D1-D5 system, JHEP04 (2004) 054 [hep-th/0404006] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys.B 701 (2004) 357 [hep-th/0405017] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals, Nucl. Phys.B 710 (2005) 425 [hep-th/0406103] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    S. Giusto, S.D. Mathur and Y.K. Srivastava, A microstate for the 3-charge black ring, Nucl. Phys.B 763 (2007) 60 [hep-th/0601193] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    J. Ford, S. Giusto and A. Saxena, A class of BPS time-dependent 3-charge microstates from spectral flow, Nucl. Phys.B 790 (2008) 258 [hep-th/0612227] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    S.D. Mathur and D. Turton, Microstates at the boundary of AdS, JHEP05 (2012) 014 [arXiv:1112.6413] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S.D. Mathur and D. Turton, Momentum-carrying waves on D1-D5 microstate geometries, Nucl. Phys.B 862 (2012) 764 [arXiv:1202.6421] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    O. Lunin, S.D. Mathur and D. Turton, Adding momentum to supersymmetric geometries, Nucl. Phys.B 868 (2013) 383 [arXiv:1208.1770] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    S. Giusto and R. Russo, Superdescendants of the D1-D5 CFT and their dual 3-charge geometries, JHEP03 (2014) 007 [arXiv:1311.5536] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Giusto, O. Lunin, S.D. Mathur and D. Turton, D1-D5-P microstates at the cap, JHEP02 (2013) 050 [arXiv:1211.0306] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    I. Bena, S. Giusto, M. Shigemori and N.P. Warner, Supersymmetric solutions in six dimensions: a linear structure, JHEP03 (2012) 084 [arXiv:1110.2781] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus superstratum! A constructive proof of the existence of superstrata, JHEP05 (2015) 110 [arXiv:1503.01463] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    I. Bena, E. Martinec, D. Turton and N.P. Warner, Momentum fractionation on superstrata, JHEP05 (2016) 064 [arXiv:1601.05805] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    I. Bena et al., Smooth horizonless geometries deep inside the black-hole regime, Phys. Rev. Lett.117 (2016) 201601 [arXiv:1607.03908] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    I. Bena, E. Martinec, D. Turton and N.P. Warner, M-theory superstrata and the MSW string, JHEP06 (2017) 137 [arXiv:1703.10171] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    I. Bena et al., Asymptotically-flat supergravity solutions deep inside the black-hole regime, JHEP02 (2018) 014 [arXiv:1711.10474] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    E. Bakhshaei and A. Bombini, Three-charge superstrata with internal excitations, Class. Quant. Grav.36 (2019) 055001 [arXiv:1811.00067] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    N. Čeplak, R. Russo and M. Shigemori, Supercharging superstrata, JHEP03 (2019) 095 [arXiv:1812.08761] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    P. Heidmann and N.P. Warner, Superstratum symbiosis, JHEP09 (2019) 059 [arXiv:1903.07631] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  37. [37]
    I. Bena, M. Shigemori and N.P. Warner, Black-hole entropy from supergravity superstrata states, JHEP10 (2014) 140 [arXiv:1406.4506] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    G. Bossard and S. Lüst, Microstate geometries at a generic point in moduli space, Gen. Rel. Grav.51 (2019) 112 [arXiv:1905.12012] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    S. Giusto, E. Moscato and R. Russo, AdS 3holography for 1/4 and 1/8 BPS geometries, JHEP11 (2015) 004 [arXiv:1507.00945] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  40. [40]
    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept.369 (2002) 549 [hep-th/0203048] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    S.G. Avery, Using the D1-D5 CFT to understand black holes, Ph.D. thesis, Ohio State U., Columbus, OH, U.S.A. (2010) [arXiv:1012.0072] [INSPIRE].
  42. [42]
    J.M. Maldacena and A. Strominger, AdS 3black holes and a stringy exclusion principle, JHEP12 (1998) 005 [hep-th/9804085] [INSPIRE].ADSzbMATHCrossRefMathSciNetGoogle Scholar
  43. [43]
    C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys.B 431 (1994) 3 [hep-th/9408074] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    S. Deger, A. Kaya, E. Sezgin and P. Sundell, Spectrum of D = 6, N = 4b supergravity on AdS 3× S 3 , Nucl. Phys.B 536 (1998) 110 [hep-th/9804166] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  45. [45]
    F. Larsen, The perturbation spectrum of black holes in N = 8 supergravity, Nucl. Phys.B 536 (1998) 258 [hep-th/9805208] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    J. de Boer, Six-dimensional supergravity on S 3×AdS 3and 2D conformal field theory, Nucl. Phys.B 548 (1999) 139 [hep-th/9806104] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    E. Gava and K.S. Narain, Proving the PP wave/CFT2 duality, JHEP12 (2002) 023 [hep-th/0208081] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B. Guo and S.D. Mathur, Lifting of states in 2-dimensional N = 4 supersymmetric CFTs, arXiv:1905.11923 [INSPIRE].
  49. [49]
    J. de Boer, Large N elliptic genus and AdS/CFT correspondence, JHEP05 (1999) 017 [hep-th/9812240] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    J.M. Maldacena, G.W. Moore and A. Strominger, Counting BPS black holes in toroidal type II string theory, hep-th/9903163 [INSPIRE].
  51. [51]
    M.A. Walton, The heterotic string on the simplest Calabi-Yau manifold and its orbifold limits, Phys. Rev.D 37 (1988) 377 [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, A bound on the entropy of supergravity?, JHEP02 (2010) 062 [arXiv:0906.0011] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    J.G. Russo and L. Susskind, Asymptotic level density in heterotic string theory and rotating black holes, Nucl. Phys.B 437 (1995) 611 [hep-th/9405117] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    N. Iizuka and M. Shigemori, A note on D1-D5-J system and 5D small black ring, JHEP08 (2005) 100 [hep-th/0506215] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    I. Bena, B.D. Chowdhury, J. de Boer, S. El-Showk and M. Shigemori, Moulting black holes, JHEP03 (2012) 094 [arXiv:1108.0411] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. [56]
    O. Lunin and S.D. Mathur, Rotating deformations of AdS 3× S 3, the orbifold CFT and strings in the pp wave limit, Nucl. Phys.B 642 (2002) 91 [hep-th/0206107] [INSPIRE].
  57. [57]
    R.C. Myers, Dielectric branes, JHEP12 (1999) 022 [hep-th/9910053] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    D. Mateos and P.K. Townsend, Supertubes, Phys. Rev. Lett.87 (2001) 011602 [hep-th/0103030] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from anti-de Sitter space, JHEP06 (2000) 008 [hep-th/0003075] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP02 (2005) 010 [hep-th/0501109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP10 (2004) 025 [hep-th/0409174] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    S. Yamaguchi, Bubbling geometries for half BPS Wilson lines, Int. J. Mod. Phys.A 22 (2007) 1353 [hep-th/0601089] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    A. Dabholkar, M. Guica, S. Murthy and S. Nampuri, No entropy enigmas for N = 4 dyons, JHEP06 (2010) 007 [arXiv:0903.2481] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    G. Mandal, S. Raju and M. Smedback, Supersymmetric giant graviton solutions in AdS 3 , Phys. Rev.D 77 (2008) 046011 [arXiv:0709.1168] [INSPIRE].ADSGoogle Scholar
  65. [65]
    A. Sen, Arithmetic of quantum entropy function, JHEP08 (2009) 068 [arXiv:0903.1477] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    A. Chowdhury, R.S. Garavuso, S. Mondal and A. Sen, BPS state counting in N = 8 supersymmetric string theory for pure D-brane configurations, JHEP10 (2014) 186 [arXiv:1405.0412] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    A. Chowdhury, R.S. Garavuso, S. Mondal and A. Sen, Do all BPS black hole microstates carry zero angular momentum?, JHEP04 (2016) 082 [arXiv:1511.06978] [INSPIRE].ADSMathSciNetGoogle Scholar
  68. [68]
    I. Bena, M. Berkooz, J. de Boer, S. El-Showk and D. Van den Bleeken, Scaling BPS solutions and pure-Higgs states, JHEP11 (2012) 171 [arXiv:1205.5023] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. [69]
    J.J. Fernandez-Melgarejo, M. Park and M. Shigemori, Non-Abelian supertubes, JHEP12 (2017) 103 [arXiv:1709.02388] [INSPIRE].
  70. [70]
    P. Heidmann and S. Mondal, The full space of BPS multicenter states with pure D-brane charges, JHEP06 (2019) 011 [arXiv:1810.10019] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    I. Bena, P. Heidmann and D. Turton, AdS 2holography: mind the cap, JHEP12 (2018) 028 [arXiv:1806.02834] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  72. [72]
    F. Benini and P. Milan, Black holes in 4d N = 4 super-Yang-Mills, arXiv:1812.09613 [INSPIRE].
  73. [73]
    A. Castro and S. Murthy, Corrections to the statistical entropy of five dimensional black holes, JHEP06 (2009) 024 [arXiv:0807.0237] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsNagoya UniversityNagoyaJapan
  2. 2.Yukawa Institute for Theoretical Physics (YITP)Kyoto UniversityKyotoJapan

Personalised recommendations