Toda theory in AdS2 and đ˛An-algebra structure of boundary correlators
- 28 Downloads
- 1 Citations
Abstract
We consider the conformal An Toda theory in AdS2. Due to the bulk full Virasoro symmetry, this system provides an instance of a non-gravitational AdS2/CFT1 correspondence where the 1d boundary theory enjoys enhanced \( ``\frac{1}{2}- Virasoro" \) symmetry. General boundary correlators are expected to be captured by the restriction of chiral correlators in a suitable WAn Virasoro extension. At next-to-leading order in weak coupling expansion they have been conjectured to match the subleading terms in the large central charge expansion of the dual đ˛An correlators. We explicitly test this conjecture on the boundary four point functions of the Toda scalar fields dual to đ˛An generators with next-to-minimal spin 3 and 4. Our analysis is valid in the generic rank case and extends previous results for specific rank-2 Toda theories. On the AdS side, the extension is straightforward and requires the computation of a finite set of tree Witten diagrams. This is due to simple rank dependence and selection rules of cubic and quartic couplings. On the boundary, we exploit crossing symmetry and specific meromorphic properties of the W-algebra correlators at large central charge. We present the required 4-point functions in closed form for any rank and verify the bulk-boundary correspondence in full details.
Keywords
AdS-CFT Correspondence Conformal Field Theory:ÂNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
References
- [1]C.G. Callan Jr. and F. Wilczek, Infrared behavior at negative curvature, Nucl. Phys.B 340 (1990) 366 [INSPIRE].ADSGoogle Scholar
- [2]M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap. Part I: QFT in AdS, JHEP11 (2017) 133 [arXiv:1607.06109] [INSPIRE].
- [3]M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap II: two dimensional amplitudes, JHEP11 (2017) 143 [arXiv:1607.06110] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [4]D. Carmi, L. Di Pietro and S. Komatsu, A Study of Quantum Field Theories in AdS at Finite Coupling, JHEP01 (2019) 200 [arXiv:1810.04185] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [5]E. DâHoker and R. Jackiw, Space translation breaking and compactification in the Liouville theory, Phys. Rev. Lett.50 (1983) 1719 [INSPIRE].ADSMathSciNetGoogle Scholar
- [6]E. DâHoker, D.Z. Freedman and R. Jackiw, SO(2, 1) Invariant Quantization of the Liouville Theory, Phys. Rev.D 28 (1983) 2583 [INSPIRE].ADSMathSciNetGoogle Scholar
- [7]T. Inami and H. Ooguri, Dynamical breakdown of supersymmetry in two-dimensional Anti-de Sitter space, Nucl. Phys.B 273 (1986) 487 [INSPIRE].ADSMathSciNetGoogle Scholar
- [8]A. Strominger, AdS 2quantum gravity and string theory, JHEP01 (1999) 007 [hep-th/9809027] [INSPIRE].ADSMathSciNetGoogle Scholar
- [9]N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS 5 Ă S 5: Semiclassical partition function, JHEP04 (2000) 021 [hep-th/0001204] [INSPIRE].ADSzbMATHGoogle Scholar
- [10]L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP11 (2007) 068 [arXiv:0710.1060] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [11]A.M. Polyakov and V.S. Rychkov, Gauge field strings duality and the loop equation, Nucl. Phys.B 581 (2000) 116 [hep-th/0002106] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [12]J. Polchinski and J. Sully, Wilson Loop Renormalization Group Flows, JHEP10 (2011) 059 [arXiv:1104.5077] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [13]N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open spin-chains, JHEP07 (2006) 024 [hep-th/0604124] [INSPIRE].ADSMathSciNetGoogle Scholar
- [14]S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS 2/CFT 1, Nucl. Phys.B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].ADSzbMATHGoogle Scholar
- [15]M. Beccaria and A.A. Tseytlin, On non-supersymmetric generalizations of the Wilson-Maldacena loops in N = 4 SYM, Nucl. Phys.B 934 (2018) 466 [arXiv:1804.02179] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [16]M. Beccaria, S. Giombi and A.A. Tseytlin, Correlators on non-supersymmetric Wilson line in N = 4 SYM and AdS 2/CFT 1, JHEP05 (2019) 122 [arXiv:1903.04365] [INSPIRE].ADSzbMATHGoogle Scholar
- [17]M. Hotta, Asymptotic isometry and two-dimensional anti-de Sitter gravity, gr-qc/9809035 [INSPIRE].
- [18]M. Cadoni and S. Mignemi, Asymptotic symmetries of AdS 2and conformal group in d = 1, Nucl. Phys.B 557 (1999) 165 [hep-th/9902040] [INSPIRE].ADSzbMATHGoogle Scholar
- [19]J. Navarro-Salas and P. Navarro, AdS 2/CFT 1correspondence and near extremal black hole entropy, Nucl. Phys.B 579 (2000) 250 [hep-th/9910076] [INSPIRE].ADSzbMATHGoogle Scholar
- [20]A. Almheiri and J. Polchinski, Models of AdS 2backreaction and holography, JHEP11 (2015) 014 [arXiv:1402.6334] [INSPIRE].ADSzbMATHGoogle Scholar
- [21]J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, Prog. Theor. Exp. Phys.2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].MathSciNetzbMATHGoogle Scholar
- [22]J. EngelsĂśy, T.G. Mertens and H. Verlinde, An investigation of AdS 2backreaction and holography, JHEP07 (2016) 139 [arXiv:1606.03438] [INSPIRE].ADSzbMATHGoogle Scholar
- [23]M. Beccaria and A.A. Tseytlin, On boundary correlators in Liouville theory on AdS 2, JHEP07 (2019) 008 [arXiv:1904.12753] [INSPIRE].ADSGoogle Scholar
- [24]A.M. Polyakov, Quantum Geometry of Bosonic Strings, Phys. Lett.B 103 (1981) 207 [INSPIRE].ADSMathSciNetGoogle Scholar
- [25]J. Teschner, Liouville theory revisited, Class. Quant. Grav.18 (2001) R153 [hep-th/0104158] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [26]Y. Nakayama, Liouville field theory: A Decade after the revolution, Int. J. Mod. Phys.A 19 (2004) 2771 [hep-th/0402009] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [27]A.B. Zamolodchikov and A.B. Zamolodchikov, Liouville field theory on a pseudosphere, hep-th/0101152 [INSPIRE].
- [28]P. Menotti and E. Tonni, Standard and geometric approaches to quantum Liouville theory on the pseudosphere, Nucl. Phys.B 707 (2005) 321 [hep-th/0406014] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [29]H. Ouyang, Holographic four-point functions in Toda field theories in AdS 2, JHEP04 (2019) 159 [arXiv:1902.10536] [INSPIRE].ADSzbMATHGoogle Scholar
- [30]J.-L. Gervais and A. Neveu, New Quantum Treatment of Liouville Field Theory, Nucl. Phys.B 224 (1983) 329 [INSPIRE].ADSMathSciNetGoogle Scholar
- [31]P. Mansfield, Light Cone Quantization of the Liouville and Toda Field Theories, Nucl. Phys.B 222 (1983) 419 [INSPIRE].ADSGoogle Scholar
- [32]E. Braaten, T. Curtright, G. Ghandour and C.B. Thorn, A Class of Conformally Invariant Quantum Field Theories, Phys. Lett.B 125 (1983) 301 [INSPIRE].ADSGoogle Scholar
- [33]M. Beccaria, H. Jiang and A.A. Tseytlin, in preparation.Google Scholar
- [34]P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept.223 (1993) 183 [hep-th/9210010] [INSPIRE].ADSMathSciNetGoogle Scholar
- [35]V.A. Fateev and S.L. Lukyanov, The Models of Two-Dimensional Conformal Quantum Field Theory with Z nSymmetry, Int. J. Mod. Phys.A 3 (1988) 507 [INSPIRE].ADSGoogle Scholar
- [36]V.A. Fateev and A.V. Litvinov, Correlation functions in conformal Toda field theory. I, JHEP11 (2007) 002 [arXiv:0709.3806] [INSPIRE].
- [37]P. Christe and G. Mussardo, Integrable Systems Away from Criticality: The Toda Field Theory and S Matrix of the Tricritical Ising Model, Nucl. Phys.B 330 (1990) 465 [INSPIRE].ADSMathSciNetGoogle Scholar
- [38]P. Christe and G. Mussardo, Elastic S-Matrices in (1 + 1)-Dimensions and Toda Field Theories, Int. J. Mod. Phys.A 5 (1990) 4581 [INSPIRE].ADSMathSciNetGoogle Scholar
- [39]H.W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Affine Toda Field Theory and Exact S-Matrices, Nucl. Phys.B 338 (1990) 689 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [40]H.W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Extended Toda Field Theory and Exact S-Matrices, Phys. Lett.B 227 (1989) 411 [INSPIRE].ADSzbMATHGoogle Scholar
- [41]B. Gabai, D. MazĂĄÄ, A. Shieber, P. Vieira and Y. Zhou, No Particle Production in Two Dimensions: Recursion Relations and Multi-Regge Limit, JHEP02 (2019) 094 [arXiv:1803.03578] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [42]F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.B 599 (2001) 459 [hep-th/0011040] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [43]F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys.B 678 (2004) 491 [hep-th/0309180] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [44]E. Perlmutter, Virasoro conformal blocks in closed form, JHEP08 (2015) 088 [arXiv:1502.07742] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [45]A.B. Zamolodchikov, Infinite Additional Symmetries in Two-Dimensional Conformal Quantum Field Theory, Theor. Math. Phys.65 (1985) 1205 [INSPIRE].Google Scholar
- [46]P. Bowcock and G.M.T. Watts, On the classification of quantum W algebras, Nucl. Phys.B 379 (1992) 63 [hep-th/9111062] [INSPIRE].ADSMathSciNetGoogle Scholar
- [47]V.A. Fateev and A.B. Zamolodchikov, Conformal Quantum Field Theory Models in Two-Dimensions Having Z 3Symmetry, Nucl. Phys.B 280 (1987) 644 [INSPIRE].ADSGoogle Scholar
- [48]F.A. Bais, P. Bouwknegt, M. Surridge and K. Schoutens, Extensions of the Virasoro Algebra Constructed from Kac-Moody Algebras Using Higher Order Casimir Invariants, Nucl. Phys.B 304 (1988) 348 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [49]F.A. Bais, P. Bouwknegt, M. Surridge and K. Schoutens, Coset Construction for Extended Virasoro Algebras, Nucl. Phys.B 304 (1988) 371 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [50]H.G. Kausch and G.M.T. Watts, A Study of W algebras using Jacobi identities, Nucl. Phys.B 354 (1991) 740 [INSPIRE].ADSMathSciNetGoogle Scholar
- [51]K. Thielemans, A Mathematica package for computing operator product expansions, Int. J. Mod. Phys.C 2 (1991) 787 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [52]A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Exact Virasoro Blocks from Wilson Lines and Background-Independent Operators, JHEP07 (2017) 092 [arXiv:1612.06385] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [53]Y. Hikida and T. Uetoko, Correlators in higher-spin AdS 3holography from Wilson lines with loop correctionsCorrelators in higher-spin AdS 3holography from Wilson lines with loop corrections, Prog. Theor. Exp. Phys.2017 (2017) 113B03 [arXiv:1708.08657] [INSPIRE].
- [54]Y. Hikida and T. Uetoko, Conformal blocks from Wilson lines with loop corrections, Phys. Rev.D 97 (2018) 086014 [arXiv:1801.08549] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [55]A. Bombini, S. Giusto and R. Russo, A note on the Virasoro blocks at order 1/c, Eur. Phys. J.C 79 (2019) 3 [arXiv:1807.07886] [INSPIRE].ADSGoogle Scholar
- [56]K. Hornfeck, The Minimal supersymmetric extension of WA nâ1, Phys. Lett.B 275 (1992) 355 [INSPIRE].ADSGoogle Scholar
- [57]K. Hornfeck, Classification of structure constants for W-algebras from highest weights, Nucl. Phys.B 411 (1994) 307 [hep-th/9307170] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [58]R. Blumenhagen, W. Eholzer, A. Honecker, K. Hornfeck and R. Hubel, Coset realization of unifying W-algebras, Int. J. Mod. Phys.A 10 (1995) 2367 [hep-th/9406203] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [59]A.R. Linshaw, Universal two-parameter W â-algebra and vertex algebras of type W(2, 3, . . . , N ), arXiv:1710.02275 [INSPIRE].
- [60]M.R. Gaberdiel and R. Gopakumar, Triality in Minimal Model Holography, JHEP07 (2012) 127 [arXiv:1205.2472] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [61]C. Candu, M.R. Gaberdiel, M. Kelm and C. Vollenweider, Even spin minimal model holography, JHEP01 (2013) 185 [arXiv:1211.3113] [INSPIRE].ADSGoogle Scholar
- [62]E. DâHoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys.B 562 (1999) 353 [hep-th/9903196] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [63]G. Arutyunov, F.A. Dolan, H. Osborn and E. Sokatchev, Correlation functions and massive Kaluza-Klein modes in the AdS/CFT correspondence, Nucl. Phys.B 665 (2003) 273 [hep-th/0212116] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
- [64]E. DâHoker, D.Z. Freedman and L. Rastelli, AdS/CFT four point functions: How to succeed at z-integrals without really trying, Nucl. Phys.B 562 (1999) 395 [hep-th/9905049] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar