Advertisement

Wilson loops in 5d \( \mathcal{N}=1 \) theories and S-duality

  • Benjamin Assel
  • Antonio Sciarappa
Open Access
Regular Article - Theoretical Physics
  • 12 Downloads

Abstract

We study the action of S-duality on half-BPS Wilson loop operators in 5d \( \mathcal{N}=1 \) theories. The duality is the statement that different massive deformations of a single 5d SCFT are described by different gauge theories, or equivalently that the SCFT points in parameter space of two gauge theories coincide. The pairs of dual theories that we study are realized by brane webs in type IIB string theory that are S-dual to each other. We focus on SU(2) SQCD theories with Nf ≤ 4 flavors, which are self-dual, and on SU(3) SQCD theories, which are dual to SU(2)2 quiver theories. From string theory engineering we predict that Wilson loops are mapped to dual Wilson loops under S-duality. We confirm the predictions with exact computations of Wilson loop VEVs, which we extract from the 5d half-index in the presence of auxiliary loop operators (also known as higher qq-characters) sourced by D3 branes placed in the brane webs. A special role is played by Wilson loops in tensor products of the (anti)fundamental representation, which provide a natural basis to express the S-duality action. The exact computations also reveal the presence of additional multiplicative factors in the duality map, in the form of background Wilson loops.

Keywords

D-branes Field Theories in Higher Dimensions Supersymmetry and Duality Wilson, ‘t Hooft and Polyakov loops 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and type-I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards Classification of 5d SCFTs: Single Gauge Node, arXiv:1705.05836 [INSPIRE].
  8. [8]
    P. Jefferson, S. Katz, H.-C. Kim and C. Vafa, On Geometric Classification of 5d SCFTs, JHEP 04 (2018) 103 [arXiv:1801.04036] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Spheres, Charges, Instantons and Bootstrap: A Five-Dimensional Odyssey, JHEP 03 (2018) 123 [arXiv:1710.08418] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    L. Bao, E. Pomoni, M. Taki and F. Yagi, M5-Branes, Toric Diagrams and Gauge Theory Duality, JHEP 04 (2012) 105 [arXiv:1112.5228] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    V. Mitev, E. Pomoni, M. Taki and F. Yagi, Fiber-Base Duality and Global Symmetry Enhancement, JHEP 04 (2015) 052 [arXiv:1411.2450] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-Brane Webs, Symmetry Enhancement and Duality in 5d Supersymmetric Gauge Theory, JHEP 03 (2014) 112 [arXiv:1311.4199] [INSPIRE].
  13. [13]
    B. Assel and J. Gomis, Mirror Symmetry And Loop Operators, JHEP 11 (2015) 055 [arXiv:1506.01718] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    H.-C. Kim, Line defects and 5d instanton partition functions, JHEP 03 (2016) 199 [arXiv:1601.06841] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Agarwal, J. Kim, S. Kim and A. Sciarappa, Wilson surfaces in M5-branes, JHEP 08 (2018) 119 [arXiv:1804.09932] [INSPIRE].
  16. [16]
    N. Nekrasov, BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and qq-characters, JHEP 03 (2016) 181 [arXiv:1512.05388] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    J.-E. Bourgine, M. Fukuda, Y. Matsuo, H. Zhang and R.-D. Zhu, Coherent states in quantum \( {\mathcal{W}}_{1+\infty } \) algebra and qq-character for 5d Super Yang-Mills, PTEP 2016 (2016) 123B05 [arXiv:1606.08020] [INSPIRE].
  18. [18]
    T. Kimura and V. Pestun, Quiver W-algebras, Lett. Math. Phys. 108 (2018) 1351 [arXiv:1512.08533] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J.-E. Bourgine, M. Fukuda, K. Harada, Y. Matsuo and R.-D. Zhu, (p, q)-webs of DIM representations, 5d \( \mathcal{N}=1 \) instanton partition functions and qq-characters, JHEP 11 (2017) 034 [arXiv:1703.10759] [INSPIRE].
  20. [20]
    D. Gaiotto and H.-C. Kim, Duality walls and defects in 5d \( \mathcal{N}=1 \) theories, JHEP 01 (2017) 019 [arXiv:1506.03871] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    H.-C. Kim, S.-S. Kim and K. Lee, 5-dim Superconformal Index with Enhanced En Global Symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP 07 (2015) 063 [arXiv:1406.6793] [INSPIRE].
  23. [23]
    C.-M. Chang, O. Ganor and J. Oh, An index for ray operators in 5d E n SCFTs, JHEP 02 (2017) 018 [arXiv:1608.06284] [INSPIRE].
  24. [24]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    D. Gaiotto and H.-C. Kim, Surface defects and instanton partition functions, JHEP 10 (2016) 012 [arXiv:1412.2781] [INSPIRE].
  26. [26]
    M. Bullimore and H.-C. Kim, The Superconformal Index of the (2, 0) Theory with Defects, JHEP 05 (2015) 048 [arXiv:1412.3872] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    M. Bullimore, H.-C. Kim and P. Koroteev, Defects and Quantum Seiberg-Witten Geometry, JHEP 05 (2015) 095 [arXiv:1412.6081] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    D. Tong, The holographic dual of AdS 3 × S 3 × S 3 × S 1, JHEP 04 (2014) 193 [arXiv:1402.5135] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Tong and K. Wong, Instantons, Wilson lines and D-branes, Phys. Rev. D 91 (2015) 026007 [arXiv:1410.8523] [INSPIRE].ADSGoogle Scholar
  32. [32]
    P. Putrov, J. Song and W. Yan, (0, 4) dualities, JHEP 03 (2016) 185 [arXiv:1505.07110] [INSPIRE].
  33. [33]
    Y. Ito, T. Okuda and M. Taki, Line operators on S 1 × R 3 and quantization of the Hitchin moduli space, JHEP 04 (2012) 010 [Erratum ibid. 1603 (2016) 085] [arXiv:1111.4221] [INSPIRE].
  34. [34]
    T.D. Brennan, A. Dey and G.W. Moore, Ont Hooft defects, monopole bubbling and supersymmetric quantum mechanics, JHEP 09 (2018) 014 [arXiv:1801.01986] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T.D. Brennan, Monopole Bubbling via String Theory, arXiv:1806.00024 [INSPIRE].
  36. [36]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, Discrete θ and the 5d superconformal index, JHEP 01 (2014) 079 [arXiv:1310.2150] [INSPIRE].
  37. [37]
    L. Bao, V. Mitev, E. Pomoni, M. Taki and F. Yagi, Non-Lagrangian Theories from Brane Junctions, JHEP 01 (2014) 175 [arXiv:1310.3841] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    H. Hayashi, H.-C. Kim and T. Nishinaka, Topological strings and 5d T N partition functions, JHEP 06 (2014) 014 [arXiv:1310.3854] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4 − D N = 2 gauge theories: 1., Adv. Theor. Math. Phys. 1 (1998) 53 [hep-th/9706110] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    Y. Tachikawa, Instanton operators and symmetry enhancement in 5d supersymmetric gauge theories, PTEP 2015 (2015) 043B06 [arXiv:1501.01031] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Theory DepartmentCERNGeneva 23Switzerland
  2. 2.School of PhysicsKorea Institute for Advanced StudySeoulRepublic of Korea

Personalised recommendations