Advertisement

Soliton solutions of the fermion-Skyrmion system in (2+1) dimensions

  • I. Perapechka
  • Nobuyuki Sawado
  • Ya. Shnir
Open Access
Regular Article - Theoretical Physics

Abstract

We study effects of backreaction of the fermionic modes localized by the baby Skyrmion in the (2+1)-dimensional Skyrme model. It is shown that there is a tower of fermionic modes of two different types, localized by the soliton, however there is only one fermionic level, which flows from positive to negative value as coupling increases. Considering the strong coupling regime we observe that the coupling of the bosonic field to the fermions may strongly deform the Skyrmion, in particular the regions of negative topological charge density appear.

Keywords

Sigma Models Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T.H.R. Skyrme, A nonlinear field theory, Proc. Roy. Soc. Lond. A 260 (1961) 127 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    N.S. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press, Cambridge, U.K., (2004) [INSPIRE].CrossRefzbMATHGoogle Scholar
  3. [3]
    G.E. Brown and M. Rho eds., The multifaceted Skyrmion, World Scientific, Singapore, (2010) [INSPIRE].zbMATHGoogle Scholar
  4. [4]
    E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    I.J.R. Aitchison and C.M. Fraser, Fermion loop contribution to Skyrmion stability, Phys. Lett. B 146 (1984) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Dhar, R. Shankar and S.R. Wadia, Nambu-Jona-Lasinio type effective Lagrangian. 2. Anomalies and nonlinear Lagrangian of low-energy, large N QCD, Phys. Rev. D 31 (1985) 3256 [INSPIRE].
  7. [7]
    D. Ebert, H. Reinhardt and M.K. Volkov, Effective hadron theory of QCD, Prog. Part. Nucl. Phys. 33 (1994) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D. Diakonov, V. Yu. Petrov and P.V. Pobylitsa, A chiral theory of nucleons, Nucl. Phys. B 306 (1988) 809 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Wakamatsu and H. Yoshiki, A chiral quark model of the nucleon, Nucl. Phys. A 524 (1991) 561 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C. Christov et al., Baryons as nontopological chiral solitons, Prog. Part. Nucl. Phys. 37 (1996) 91 [hep-ph/9604441] [INSPIRE].
  11. [11]
    R. Alkofer, H. Reinhardt and H. Weigel, Baryons as chiral solitons in the Nambu-Jona-Lasinio model, Phys. Rept. 265 (1996) 139 [hep-ph/9501213] [INSPIRE].
  12. [12]
    J.R. Hiller and T.F. Jordan, Solutions of the Dirac equation for Fermions in Skyrme fields, Phys. Rev. D 34 (1986) 1176 [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    S. Kahana, G. Ripka and V. Soni, Soliton with valence quarks in the chiral invariant σ-model, Nucl. Phys. A 415 (1984) 351 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Kahana and G. Ripka, Baryon density of quarks coupled to a chiral field, Nucl. Phys. A 429 (1984) 462 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Ripka and S. Kahana, The stability of a chiral soliton in the Fermion one loop approximation, Phys. Lett. B 155 (1985) 327 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A.A. Bogolubskaya and I.L. Bogolubsky, Stationary topological solitons in the two-dimensional anisotropic Heisenberg model with a Skyrme term, Phys. Lett. A 136 (1989) 485 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A.A. Bogolyubskaya and I.L. Bogolyubsky, On stationary topological solitons in two-dimensional anisotropic Heisenberg model, Lett. Math. Phys. 19 (1990) 171 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    R.A. Leese, M. Peyrard and W.J. Zakrzewski, Soliton scatterings in some relativistic models in (2 + 1) dimensions, Nonlinearity 3 (1990) 773.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    B.M. A.G. Piette, W.J. Zakrzewski, H.J.W. Mueller-Kirsten and D.H. Tchrakian, A modified Mottola-Wipf model with sphaleron and instanton fields, Phys. Lett. B 320 (1994) 294 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    B.M. A.G. Piette, B.J. Schroers and W.J. Zakrzewski, Multi-solitons in a two-dimensional Skyrme model, Z. Phys. C 65 (1995) 165 [hep-th/9406160] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A.N. Bogdanov and D.A. Yablonsky, Thermodynamically stablevorticesin magnetically ordered crystals. The mixed state of magnets, Zh. Eksp. Teor. Fiz. 95 (1989) 178 [Sov. Phys. JETP 68 (1989) 101].Google Scholar
  22. [22]
    A.N. Bogdanov, New localized solutions of the nonlinear field equations, JETP Lett. 62 (1995) 247.ADSMathSciNetGoogle Scholar
  23. [23]
    I.I. Smalyukh, Y. Lansac, N.A. Clark and R.P. Trivedi, Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids, Nature Mater. 9 (2009) 139.ADSCrossRefGoogle Scholar
  24. [24]
    P.J. Ackerman, R.P. Trivedi, B. Senyuk, J. van de Lagemaat and I.I. Smalyukh, Two-dimensional Skyrmions and other solitonic structures in confinement-frustrated chiral nematics, Phys. Rev. E 90 (2014) 012505.ADSGoogle Scholar
  25. [25]
    T. Jaroszewicz, Induced topological terms, spin and statistics in (2 + 1)-dimensions, Phys. Lett. B 159 (1985) 299 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A.G. Abanov, Hopf term induced by fermions, Phys. Lett. B 492 (2000) 321 [hep-th/0005150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A.G. Abanov and P.B. Wiegmann, On the correspondence between fermionic number and statistics of solitons, JHEP 10 (2001) 030 [hep-th/0105213] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    Y. Kodama, K. Kokubu and N. Sawado, Localization of massive fermions on the baby-skyrmion branes in 6 dimensions, Phys. Rev. D 79 (2009) 065024 [arXiv:0812.2638] [INSPIRE].ADSGoogle Scholar
  29. [29]
    T. Delsate and N. Sawado, Localizing modes of massive fermions and a U(1) gauge field in the inflating baby-skyrmion branes, Phys. Rev. D 85 (2012) 065025 [arXiv:1112.2714] [INSPIRE].Google Scholar
  30. [30]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Two-dimensional σ-models: modeling nonperturbative effects of quantum chromodynamics, Phys. Rept. 116 (1984) 103 [Sov. J. Part. Nucl. 17 (1986) 204] [Fiz. Elem. Chast. Atom. Yadra 17 (1986) 472] [INSPIRE].
  31. [31]
    C. Adam, J.M. Queiruga, J. Sanchez-Guillen and A. Wereszczynski, N = 1 supersymmetric extension of the baby Skyrme model, Phys. Rev. D 84 (2011) 025008 [arXiv:1105.1168] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J.M. Queiruga, Baby Skyrme model and fermionic zero modes, Phys. Rev. D 94 (2016) 065022 [arXiv:1606.02869] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    M.-S. Zhao and J.R. Hiller, Eigenenergies of fermions bound in Skyrme fields, Phys. Rev. D 40 (1989) 1329 [INSPIRE].ADSGoogle Scholar
  34. [34]
    A.P. Balachandran and S. Vaidya, Skyrmions, spectral flow and parity doubles, Int. J. Mod. Phys. A 14 (1999) 445 [hep-th/9803125] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    S. Krusch, Fermions coupled to skyrmions on S 3, J. Phys. A 36 (2003) 8141 [hep-th/0304264] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  36. [36]
    B.M. A.G. Piette, B.J. Schroers and W.J. Zakrzewski, Dynamics of baby skyrmions, Nucl. Phys. B 439 (1995) 205 [hep-ph/9410256] [INSPIRE].
  37. [37]
    T. Weidig, The baby Skyrme models and their multi-skyrmions, Nonlinearity 12 (1999) 1489.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    R. Bartnik and J. Mckinnon, Particle-like solutions of the Einstein Yang-Mills equations, Phys. Rev. Lett. 61 (1988) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with PARDISO, Future Gen. Comput. Syst. 20 (2004) 475.CrossRefzbMATHGoogle Scholar
  40. [40]
    H. Reinhardt, The chiral soliton in the proper time regularization scheme, Nucl. Phys. A 503 (1989) 825 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Theoretical Physics and AstrophysicsBelarusian State UniversityMinskBelarus
  2. 2.Department of PhysicsTokyo University of ScienceNodaJapan
  3. 3.BLTP, JINRDubnaRussia

Personalised recommendations