The infrared structure of Nambu-Goldstone bosons

  • Ian Low
  • Zhewei YinEmail author
Open Access
Regular Article - Theoretical Physics


The construction of effective actions for Nambu-Goldstone bosons, and the nonlinear sigma model, usually requires a target coset space G/H. Recent progresses uncovered a new formulation using only IR data without reference to the broken group G in the UV, by imposing the Adler’s zero condition, which can be seen to originate from the superselection rule in the space of degenerate vacua. The IR construction imposes a nonlinear shift symmetry on the Lagrangian to enforce the correct single soft limit amid constraints of the unbroken group H. We present a systematic study on the consequence of the Adler’s zero condition in correlation functions of nonlinear sigma models, by deriving the conserved current and the Ward identity associated with the nonlinear shift symmetry, and demonstrate how the old-fashioned current algebra emerges. The Ward identity leads to a new representation of on-shell amplitudes, which amounts to bootstrapping the higher point amplitudes from lower point amplitudes and adding new vertices to satisfy the Adler’s condition. The IR perspective allows one to extract Feynman rules for the mysterious extended theory of biadjoint cubic scalars residing in the subleading single soft limit, which was first discovered using the Cachazo-He-Yuan representation of scattering amplitudes. In addition, we present the subleading triple soft theorem in the nonlinear sigma model and show that it is also controlled by on-shell amplitudes of the same extended theory as in the subleading single soft limit.


Effective Field Theories Sigma Models Spontaneous Symmetry Breaking Scattering Amplitudes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Y. Nambu, Quasiparticles and gauge invariance in the theory of superconductivity, Phys. Rev. 117 (1960) 648 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    J. Goldstone, Field theories with superconductor solutions, Nuovo Cim. 19 (1961) 154 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].
  4. [4]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].
  5. [5]
    S.B. Treiman, E. Witten, R. Jackiw and B. Zumino, Current algebra and anomalies, World Scientific, Singapore, (1986) [INSPIRE].CrossRefzbMATHGoogle Scholar
  6. [6]
    S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current, Phys. Rev. 137 (1965) B1022 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    R.F. Dashen and M. WEinstein, Soft pions, chiral symmetry and phenomenological Lagrangians, Phys. Rev. 183 (1969) 1261 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    I. Low, Adlers zero and effective Lagrangians for nonlinearly realized symmetry, Phys. Rev. D 91 (2015) 105017 [arXiv:1412.2145] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    I. Low, Minimally symmetric Higgs boson, Phys. Rev. D 91 (2015) 116005 [arXiv:1412.2146] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.R. Ellis, The Adler zero condition and current algebra, Nucl. Phys. B 21 (1970) 217 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective field theories from soft limits of scattering amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, A periodic table of effective field theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, On-shell recursion relations for effective field theories, Phys. Rev. Lett. 116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    L. Susskind and G. Frye, Algebraic aspects of pionic duality diagrams, Phys. Rev. D 1 (1970) 1682 [INSPIRE].ADSGoogle Scholar
  15. [15]
    F.E. Low, Scattering of light of very low frequency by systems of spin 1/2, Phys. Rev. 96 (1954) 1428 [INSPIRE].
  16. [16]
    M. Gell-Mann and M.L. Goldberger, Scattering of low-energy photons by particles of spin 1/2, Phys. Rev. 96 (1954) 1433 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    T.H. Burnett and N.M. Kroll, Extension of the low soft photon theorem, Phys. Rev. Lett. 20 (1968) 86 [INSPIRE].
  19. [19]
    S. Weinberg, Photons and gravitons in s matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    D.J. Gross and R. Jackiw, Low-energy theorem for graviton scattering, Phys. Rev. 166 (1968) 1287 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R. Jackiw, Low-energy theorems for massless bosons: photons and gravitons, Phys. Rev. 168 (1968) 1623 [INSPIRE].
  23. [23]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Strominger, Asymptotic symmetries of Yang-Mills theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New symmetries of massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-energy behavior of gluons and gravitons from gauge invariance, Phys. Rev. D 90 (2014) 084035 [arXiv:1406.6987] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE].
  29. [29]
    Y. Hamada and G. Shiu, Infinite set of soft theorems in gauge-gravity theories as Ward-Takahashi identities, Phys. Rev. Lett. 120 (2018) 201601 [arXiv:1801.05528] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    K. Kampf, J. Novotny and J. Trnka, Tree-level amplitudes in the nonlinear σ-model, JHEP 05 (2013) 032 [arXiv:1304.3048] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    F. Cachazo, S. He and E.Y. Yuan, New double soft emission theorems, Phys. Rev. D 92 (2015) 065030 [arXiv:1503.04816] [INSPIRE].
  32. [32]
    Y.-J. Du and H. Lüo, On single and double soft behaviors in NLSM, JHEP 08 (2015) 058 [arXiv:1505.04411] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    I. Low, Double soft theorems and shift symmetry in nonlinear σ-models, Phys. Rev. D 93 (2016) 045032 [arXiv:1512.01232] [INSPIRE].
  34. [34]
    F. Cachazo, P. Cha and S. Mizera, Extensions of theories from soft limits, JHEP 06 (2016) 170 [arXiv:1604.03893] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    Y.-J. Du and H. Lüo, Leading order multi-soft behaviors of tree amplitudes in NLSM, JHEP 03 (2017) 062 [arXiv:1611.07479] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    Z.-Z. Li, H.-H. Lin and S.-Q. Zhang, On the symmetry foundation of double soft theorems, JHEP 12 (2017) 032 [arXiv:1710.00480] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    I. Low and Z. Yin, Ward identity and scattering amplitudes for nonlinear σ-models, Phys. Rev. Lett. 120 (2018) 061601 [arXiv:1709.08639] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M.P. Bogers and T. Brauner, Lie-algebraic classification of effective theories with enhanced soft limits, JHEP 05 (2018) 076 [arXiv:1803.05359] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    B. Gabai and A. Sever, Large gauge symmetries and asymptotic states in QED, JHEP 12 (2016) 095 [arXiv:1607.08599] [INSPIRE].
  43. [43]
    M. Mirbabayi and M. Porrati, Dressed hard states and black hole soft hair, Phys. Rev. Lett. 117 (2016) 211301 [arXiv:1607.03120] [INSPIRE].
  44. [44]
    D. Kapec, M. Perry, A.-M. Raclariu and A. Strominger, Infrared divergences in QED, revisited, Phys. Rev. D 96 (2017) 085002 [arXiv:1705.04311] [INSPIRE].ADSGoogle Scholar
  45. [45]
    S. Weinberg, The quantum theory of fields. Vol. 2: modern applications, Cambridge University Press, Cambridge, U.K., (2013) [INSPIRE].
  46. [46]
    S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys. 31 (1973) 259 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    I. Low and A.V. Manohar, Spontaneously broken space-time symmetries and Goldstones theorem, Phys. Rev. Lett. 88 (2002) 101602 [hep-th/0110285] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].
  50. [50]
    V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].
  51. [51]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    D. Liu, I. Low and Z. Yin, Universal imprints of a pseudo-Nambu-Goldstone Higgs boson, arXiv:1805.00489 [INSPIRE].
  53. [53]
    G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) pp.1 [arXiv:1506.01961] [INSPIRE].
  54. [54]
    B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    G. Chen and Y.-J. Du, Amplitude relations in non-linear σ-model, JHEP 01 (2014) 061 [arXiv:1311.1133] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    Y.-J. Du and C.-H. Fu, Explicit BCJ numerators of nonlinear sigma model, JHEP 09 (2016) 174 [arXiv:1606.05846] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    J.J.M. Carrasco, C.R. Mafra and O. Schlotterer, Abelian Z-theory: NLSM amplitudes and α-corrections from the open string, JHEP 06 (2017) 093 [arXiv:1608.02569] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    C. Cheung and C.-H. Shen, Symmetry for flavor-kinematics duality from an action, Phys. Rev. Lett. 118 (2017) 121601 [arXiv:1612.00868] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    Z. Yin, The infrared structure of exceptional scalar theories, to appear, (2018).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyNorthwestern UniversityEvanstonU.S.A.
  2. 2.High Energy Physics DivisionArgonne National LaboratoryArgonneU.S.A.
  3. 3.Theoretical Physics DepartmentCERNGeneva 23Switzerland

Personalised recommendations