Advertisement

Holographic zero sound from spacetime-filling branes

  • Nikola I. Gushterov
  • Andy O’Bannon
  • Ronnie Rodgers
Open Access
Regular Article - Theoretical Physics

Abstract

We use holography to study sound modes of strongly-interacting conformal field theories with non-zero temperature, T , and U(1) chemical potential, μ. Specifically, we consider charged black brane solutions of Einstein gravity in (3+1)-dimensional Anti-de Sitter space coupled to a U(1) gauge field with Dirac-Born-Infeld action, representing a spacetime-filling brane. The brane action has two free parameters: the tension and the non-linearity parameter, which controls higher-order terms in the field strength. For all values of the tension, non-linearity parameter, and T /μ, and at sufficiently small momentum, we find sound modes with speed given by the conformal value and attenuation constant of hydrodynamic form. In particular we find sound at arbitrarily low T /μ, outside the usual hydrodynamic regime, but in the regime where a Fermi liquid exhibits Landau’s “zero” sound. In fact, the sound attenuation constant as a function of T /μ qualitatively resembles that of a Fermi liquid, including a maximum, which in a Fermi liquid signals the collisionless to hydrodynamic crossover. We also explore regimes of the tension and non-linearity parameter where two other proposed definitions of the crossover are viable, via pole collisions in Green’s functions or peak movement in the charge density spectral function.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Adams et al., Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality, New J. Phys. 14 (2012) 115009 [arXiv:1205.5180] [INSPIRE].
  2. [2]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  4. [4]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].
  8. [8]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [INSPIRE].
  10. [10]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A.O. Starinets, Quasinormal spectrum and the black hole membrane paradigm, Phys. Lett. B 670 (2009) 442 [arXiv:0806.3797] [INSPIRE].
  12. [12]
    M. Haack and A. Yarom, Universality of second order transport coefficients from the gauge-string duality, Nucl. Phys. B 813 (2009) 140 [arXiv:0811.1794] [INSPIRE].
  13. [13]
    E. Shaverin and A. Yarom, Universality of second order transport in Gauss-Bonnet gravity, JHEP 04 (2013) 013 [arXiv:1211.1979] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S. Grozdanov and A.O. Starinets, On the universal identity in second order hydrodynamics, JHEP 03 (2015) 007 [arXiv:1412.5685] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    P. Kleinert and J. Probst, Second-order hydrodynamics and universality in non-conformal holographic fluids, JHEP 12 (2016) 091 [arXiv:1610.01081] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S. Grozdanov and A.O. Starinets, Second-order transport, quasinormal modes and zero-viscosity limit in the Gauss-Bonnet holographic fluid, JHEP 03 (2017) 166 [arXiv:1611.07053] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    N. Banerjee et al., Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    A. Karch, D.T. Son and A.O. Starinets, Zero sound from holography, arXiv:0806.3796 [INSPIRE].
  21. [21]
    M. Kulaxizi and A. Parnachev, Comments on Fermi liquid from holography, Phys. Rev. D 78 (2008) 086004 [arXiv:0808.3953] [INSPIRE].
  22. [22]
    M. Kulaxizi and A. Parnachev, Holographic responses of fermion matter, Nucl. Phys. B 815 (2009) 125 [arXiv:0811.2262] [INSPIRE].
  23. [23]
    K.-Y. Kim and I. Zahed, Baryonic response of dense holographic QCD, JHEP 12 (2008) 075 [arXiv:0811.0184] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Karch, D.T. Son and A.O. Starinets, Holographic quantum liquid, Phys. Rev. Lett. 102 (2009) 051602 [INSPIRE].
  25. [25]
    M. Kaminski et al., Holographic operator mixing and quasinormal modes on the brane, JHEP 02 (2010) 021 [arXiv:0911.3610] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP 10 (2010) 058 [arXiv:1005.4075] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    C. Hoyos-Badajoz, A. O’Bannon and J.M.S. Wu, Zero sound in strange metallic holography, JHEP 09 (2010) 086 [arXiv:1007.0590] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    D. Nickel and D.T. Son, Deconstructing holographic liquids, New J. Phys. 13 (2011) 075010 [arXiv:1009.3094] [INSPIRE].
  29. [29]
    B.-H. Lee, D.-W. Pang and C. Park, Zero sound in effective holographic theories, JHEP 11 (2010) 120 [arXiv:1009.3966] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP 10 (2011) 034 [arXiv:1106.3883] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    M. Ammon et al., On stability and transport of cold holographic matter, JHEP 09 (2011) 030 [arXiv:1108.1798] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    R.A. Davison and A.O. Starinets, Holographic zero sound at finite temperature, Phys. Rev. D 85 (2012) 026004 [arXiv:1109.6343] [INSPIRE].
  33. [33]
    R.A. Davison and N.K. Kaplis, Bosonic excitations of the AdS 4 Reissner-Nordstrom black hole, JHEP 12 (2011) 037 [arXiv:1111.0660] [INSPIRE].
  34. [34]
    N. Jokela, G. Lifschytz and M. Lippert, Magnetic effects in a holographic Fermi-like liquid, JHEP 05 (2012) 105 [arXiv:1204.3914] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Goykhman, A. Parnachev and J. Zaanen, Fluctuations in finite density holographic quantum liquids, JHEP 10 (2012) 045 [arXiv:1204.6232] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D.K. Brattan, R.A. Davison, S.A. Gentle and A. O’Bannon, Collective excitations of holographic quantum liquids in a magnetic field, JHEP 11 (2012) 084 [arXiv:1209.0009] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    N. Jokela, M. Jarvinen and M. Lippert, Fluctuations and instabilities of a holographic metal, JHEP 02 (2013) 007 [arXiv:1211.1381] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D.-W. Pang, Probing holographic semilocal quantum liquids with D-branes, Phys. Rev. D 88 (2013) 046002 [arXiv:1306.3816] [INSPIRE].
  39. [39]
    P. Dey and S. Roy, Zero sound in strange metals with hyperscaling violation from holography, Phys. Rev. D 88 (2013) 046010 [arXiv:1307.0195] [INSPIRE].
  40. [40]
    M. Edalati and J.F. Pedraza, Aspects of current correlators in holographic theories with hyperscaling violation, Phys. Rev. D 88 (2013) 086004 [arXiv:1307.0808] [INSPIRE].
  41. [41]
    D.K. Brattan and G. Lifschytz, Holographic plasma and anyonic fluids, JHEP 02 (2014) 090 [arXiv:1310.2610] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R.A. Davison, M. Goykhman and A. Parnachev, AdS/CFT and Landau Fermi liquids, JHEP 07 (2014) 109 [arXiv:1312.0463] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    B.S. DiNunno, M. Ihl, N. Jokela and J.F. Pedraza, Holographic zero sound at finite temperature in the Sakai-Sugimoto model, JHEP 04 (2014) 149 [arXiv:1403.1827] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    N. Jokela and A.V. Ramallo, Universal properties of cold holographic matter, Phys. Rev. D 92 (2015) 026004 [arXiv:1503.04327] [INSPIRE].
  45. [45]
    G. Itsios, N. Jokela and A.V. Ramallo, Collective excitations of massive flavor branes, Nucl. Phys. B 909 (2016) 677 [arXiv:1602.06106] [INSPIRE].
  46. [46]
    N. Jokela, J. Jrvel and A.V. Ramallo, Non-relativistic anyons from holography, Nucl. Phys. B 916 (2017) 727 [arXiv:1605.09156] [INSPIRE].
  47. [47]
    S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
  48. [48]
    D. Roychowdhury, Probing η deformed backgrounds with Dp branes, Phys. Lett. B 778 (2018) 167 [arXiv:1706.02625] [INSPIRE].
  49. [49]
    C.-F. Chen and A. Lucas, Origin of the Drude peak and of zero sound in probe brane holography, Phys. Lett. B 774 (2017) 569 [arXiv:1709.01520] [INSPIRE].
  50. [50]
    S. Sachdev, What can gauge-gravity duality teach us about condensed matter physics?, Ann. Rev. Condensed Matter Phys. 3 (2012) 9 [arXiv:1108.1197] [INSPIRE].CrossRefGoogle Scholar
  51. [51]
    J. Tarrio, Transport properties of spacetime-filling branes, JHEP 04 (2014) 042 [arXiv:1312.2902] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J. Polchinski, String theory. Volume 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (2007)Google Scholar
  53. [53]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    L. Landau, Oscillations in a Fermi liquid, Zh. Eksp. Teor. Fiz. 32 (1957) 59 [Sov. Phys. JETP 5 (1957) 101].Google Scholar
  55. [55]
    W.R. Abel, A.C. Anderson and J.C. Wheatley, Propagation of zero sound in liquid he3 at low temperatures, Phys. Rev. Lett. 17 (1966) 74.Google Scholar
  56. [56]
    D. Pines and P. Nozieres, The theory of quantum liquids. Volume 1, W.A. Benjamin, Inc., New York City, U.S.A. (1966).Google Scholar
  57. [57]
    E.M. Lifshitz and L.P. Pitaevskii, Statistical physics. Part 2: theory of the condensed state, Course of Theoretical Physics volume 9, Pergamon Press, Oxford U.K. (1980).Google Scholar
  58. [58]
    E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics, Course of Theoretical Physics volume 10, Pergamon Press, Oxford U.K. (1981).Google Scholar
  59. [59]
    J.W. Negele and H. Orland, Quantum many-particle systems, Frontiers In Physics volume 68, Addison-Wesley, New York City U.S.A. (1988).Google Scholar
  60. [60]
    R.J. Anantua, S.A. Hartnoll, V.L. Martin and D.M. Ramirez, The Pauli exclusion principle at strong coupling: holographic matter and momentum space, JHEP 03 (2013) 104 [arXiv:1210.1590] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP 01 (2015) 039 [arXiv:1411.1062] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].
  63. [63]
    M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].
  65. [65]
    M. Edalati, J.I. Jottar and R.G. Leigh, Shear modes, criticality and extremal black holes, JHEP 04 (2010) 075 [arXiv:1001.0779] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    N. Iqbal, H. Liu and M. Mezei, Semi-local quantum liquids, JHEP 04 (2012) 086 [arXiv:1105.4621] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    C.P. Herzog, The sound of M-theory, Phys. Rev. D 68 (2003) 024013 [hep-th/0302086] [INSPIRE].
  68. [68]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].
  69. [69]
    S. Fernando and D. Krug, Charged black hole solutions in Einstein-Born-Infeld gravity with a cosmological constant, Gen. Rel. Grav. 35 (2003) 129 [hep-th/0306120] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    T.K. Dey, Born-Infeld black holes in the presence of a cosmological constant, Phys. Lett. B 595 (2004) 484 [hep-th/0406169] [INSPIRE].
  71. [71]
    R.-G. Cai, D.-W. Pang and A. Wang, Born-Infeld black holes in (A)dS spaces, Phys. Rev. D 70 (2004) 124034 [hep-th/0410158] [INSPIRE].
  72. [72]
    S.S. Pal, Fermi-like liquid from Einstein-DBI-dilaton system, JHEP 04 (2013) 007 [arXiv:1209.3559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    A.O. Starinets, Quasinormal modes of near extremal black branes, Phys. Rev. D 66 (2002) 124013 [hep-th/0207133] [INSPIRE].
  76. [76]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. 2. Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [INSPIRE].
  77. [77]
    N.I. Gushterov, Quasinormal modes and correlators in the shear channel of spacetime-filling branes, arXiv:1807.11390 [INSPIRE].
  78. [78]
    S. Bhattacharyya, S. Lahiri, R. Loganayagam and S. Minwalla, Large rotating AdS black holes from fluid mechanics, JHEP 09 (2008) 054 [arXiv:0708.1770] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    R.A. Davison and A. Parnachev, Hydrodynamics of cold holographic matter, JHEP 06 (2013) 100 [arXiv:1303.6334] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    M. Ammon and J. Erdmenger, Gauge/gravity duality, Cambridge University Press, Cambridge U.K. (2015).Google Scholar
  81. [81]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].
  82. [82]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].
  83. [83]
    J.I. Kapusta and C. Gale, Finite-temperature field theory: principles and applications, Cambridge University Press, Cambridge U.K. (2011).Google Scholar
  84. [84]
    D.P. Landau and E.M. Lifshitz, Fluid mechanics, Course of Theoretical Physics volume 6, Pergamon Press, Oxford U.K. (1987).Google Scholar
  85. [85]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  86. [86]
    F. Bigazzi, A.L. Cotrone and J. Tarrio, Charged D3-D7 plasmas: novel solutions, extremality and stability issues, JHEP 07 (2013) 074 [arXiv:1304.4802] [INSPIRE].
  87. [87]
    D. Mateos, R.C. Myers and R.M. Thomson, Holographic viscosity of fundamental matter, Phys. Rev. Lett. 98 (2007) 101601 [hep-th/0610184] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP 05 (2007) 067 [hep-th/0701132] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    F. Bigazzi et al., D3-D7 quark-gluon plasmas, JHEP 11 (2009) 117 [arXiv:0909.2865] [INSPIRE].
  90. [90]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer, Germany (1997).Google Scholar
  91. [91]
    J. Mas, J.P. Shock and J. Tarrio, A note on conductivity and charge diffusion in holographic flavour systems, JHEP 01 (2009) 025 [arXiv:0811.1750] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    J.C. Solana, S. Grozdanov and A.O. Starinets, Transport peak in thermal spectral function of \( \mathcal{N}=4 \) supersymmetric Yang-Mills plasma at intermediate coupling,arXiv:1806.10997 [INSPIRE].
  93. [93]
    A. Lucas and K.C. Fong, Hydrodynamics of electrons in graphene, J. Phys. Condens. Matter 30 (2018) 053001 [arXiv:1710.08425] [INSPIRE].
  94. [94]
    A. Lucas and S. Das Sarma, Electronic sound modes and plasmons in hydrodynamic two-dimensional metals, Phys. Rev. B 97 (2018) 115449.Google Scholar
  95. [95]
    H. Kodama and A. Ishibashi, Master equations for perturbations of generalized static black holes with charge in higher dimensions, Prog. Theor. Phys. 111 (2004) 29 [hep-th/0308128] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  96. [96]
    G. Michalogiorgakis and S.S. Pufu, Low-lying gravitational modes in the scalar sector of the global AdS 4 black hole, JHEP 02 (2007) 023 [hep-th/0612065] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Department of Physics, Clarendon LaboratoryOxfordU.K.
  2. 2.STAG Research Centre, Physics and AstronomyUniversity of Southampton HighfieldSouthamptonU.K.

Personalised recommendations