Kinetic mixing, dark photons and extra dimensions. Part II: fermionic dark matter

  • Thomas G. RizzoEmail author
Open Access
Regular Article - Theoretical Physics


Extra dimensions can be very useful tools when constructing new physics models. Previously, we began investigating toy models for the 5-D analog of the kinetic mixing/vector portal scenario where the interactions of bulk dark matter with the brane-localized fields of the Standard Model are mediated by a massive U(1)D dark photon also living in the bulk. In that setup, where the dark matter was taken to be a complex scalar, a number of nice features were obtained such as U(1)D breaking by boundary conditions without the introduction of a dark Higgs field, the absence of potentially troublesome SM Higgs-dark singlet mixing, also by boundary conditions, the natural similarity of the dark matter and dark photon masses and the decoupling of the heavy gauge Kaluza-Klein states from the Standard Model. In the present paper we extend this approach by examining the more complex cases of Dirac and Majorana fermionic dark matter. In particular, we discuss a new mechanism that can occur in 5-D (but not in 4-D) that allows for light Dirac dark matter in the ∼ 100 MeV mass range, even though it has an s-wave annihilation into Standard Model fields, by avoiding the strong constraints that arise from both the CMB and 21 cm data. This mechanism makes use of the presence of the Kaluza-Klein excitations of the dark photon to extremize the increase in the annihilation cross section usually obtained via resonant enhancement. In the Majorana dark matter case, we explore the possibility of a direct s-channel dark matter pair-annihilation process producing the observed relic density, due to the general presence of parity-violating dark matter interactions, without employing the usual co-annihilation mechanism which is naturally suppressed in this 5-D setup.


Phenomenology of Field Theories in Higher Dimensions Phenomenology of Large extra dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G. Arcadi et al., The waning of the WIMP? A review of models, searches and constraints, Eur. Phys. J. C 78 (2018) 203 [arXiv:1703.07364] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Kawasaki and K. Nakayama, Axions: theory and cosmological role, Ann. Rev. Nucl. Part. Sci. 63 (2013) 69 [arXiv:1301.1123] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P.W. Graham, Experimental searches for the axion and axion-like particles, Ann. Rev. Nucl. Part. Sci. 65 (2015) 485 [arXiv:1602.00039] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Alexander et al., Dark sectors 2016 workshop: community report, arXiv:1608.08632 [INSPIRE].
  5. [5]
    M. Battaglieri et al., US cosmic visions: new ideas in dark matter 2017. Community report, arXiv:1707.04591 [INSPIRE].
  6. [6]
    D. Feldman, B. Körs and P. Nath, Extra-weakly interacting dark matter, Phys. Rev. D 75 (2007) 023503 [hep-ph/0610133] [INSPIRE].
  7. [7]
    D. Feldman, Z. Liu and P. Nath, The Stueckelberg Zextension with kinetic mixing and milli-charged dark matter from the hidden sector, Phys. Rev. D 75 (2007) 115001 [hep-ph/0702123] [INSPIRE].
  8. [8]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].
  9. [9]
    M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].ADSGoogle Scholar
  10. [10]
    H. Davoudiasl, H.-S. Lee and W.J. Marciano, Muon anomaly and dark parity violation, Phys. Rev. Lett. 109 (2012) 031802 [arXiv:1205.2709] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    H. Davoudiasl, H.-S. Lee and W.J. Marciano, ‘DarkZ implications for parity violation, rare meson decays and Higgs physics, Phys. Rev. D 85 (2012) 115019 [arXiv:1203.2947] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R. Essig et al., Working group report: new light weakly coupled particles, arXiv:1311.0029 [INSPIRE].
  13. [13]
    E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, Analyzing the discovery potential for light dark matter, Phys. Rev. Lett. 115 (2015) 251301 [arXiv:1505.00011] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating dark photons with high-energy colliders, JHEP 02 (2015) 157 [arXiv:1412.0018] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196.ADSCrossRefGoogle Scholar
  16. [16]
    B. Holdom, Searching for ϵ charges and a new U(1), Phys. Lett. B 178 (1986) 65 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [INSPIRE].
  18. [18]
    F. Del Aguila, The physics of Zbosons, Acta Phys. Polon. B 25 (1994) 1317 [hep-ph/9404323] [INSPIRE].
  19. [19]
    K.S. Babu, C.F. Kolda and J. March-Russell, Leptophobic U(1) s and the R(b)-R(c) crisis, Phys. Rev. D 54 (1996) 4635 [hep-ph/9603212] [INSPIRE].
  20. [20]
    T.G. Rizzo, Gauge kinetic mixing and leptophobic Zin E 6 and SO(10), Phys. Rev. D 59 (1998) 015020 [hep-ph/9806397] [INSPIRE].
  21. [21]
    I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    K.R. Dienes, E. Dudas and T. Gherghetta, Extra space-time dimensions and unification, Phys. Lett. B 436 (1998) 55 [hep-ph/9803466] [INSPIRE].
  23. [23]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].
  24. [24]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].
  25. [25]
    L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  26. [26]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].
  27. [27]
    T.G. Rizzo, Kinetic mixing, dark photons and an extra dimension. Part I, JHEP 07 (2018) 118 [arXiv:1801.08525] [INSPIRE].
  28. [28]
    K.L. McDonald and D.E. Morrissey, Low-energy probes of a warped extra dimension, JHEP 05 (2010) 056 [arXiv:1002.3361] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    K.L. McDonald and D.E. Morrissey, Low-energy signals from kinetic mixing with a warped abelian hidden sector, JHEP 02 (2011) 087 [arXiv:1010.5999] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    K.R. Dienes and B. Thomas, Dynamical dark matter: I. Theoretical overview, Phys. Rev. D 85 (2012) 083523 [arXiv:1106.4546] [INSPIRE].
  31. [31]
    K.R. Dienes and B. Thomas, Dynamical dark matter: II. An explicit model, Phys. Rev. D 85 (2012) 083524 [arXiv:1107.0721] [INSPIRE].
  32. [32]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  33. [33]
    H. Liu, T.R. Slatyer and J. Zavala, Contributions to cosmic reionization from dark matter annihilation and decay, Phys. Rev. D 94 (2016) 063507 [arXiv:1604.02457] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Dutra et al., MeV dark matter complementarity and the dark photon portal, JCAP 03 (2018) 037 [arXiv:1801.05447] [INSPIRE].
  35. [35]
    J.D. Bowman et al., An absorption profile centred at 78 MegaHertz in the sky-averaged spectrum, Nature 555 (2018) 67.ADSCrossRefGoogle Scholar
  36. [36]
    T.R. Slatyer and C.-L. Wu, General constraints on dark matter decay from the cosmic microwave background, Phys. Rev. D 95 (2017) 023010 [arXiv:1610.06933] [INSPIRE].ADSGoogle Scholar
  37. [37]
    H. Liu and T.R. Slatyer, Implications of a 21 cm signal for dark matter annihilation and decay, Phys. Rev. D 98 (2018) 023501 [arXiv:1803.09739] [INSPIRE].ADSGoogle Scholar
  38. [38]
    S. Clark et al., 21 cm limits on decaying dark matter and primordial black holes, Phys. Rev. D 98 (2018) 043006 [arXiv:1803.09390] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A. Mitridate and A. Podo, Bounds on dark matter decay from 21 cm line, JCAP 05 (2018) 069 [arXiv:1803.11169] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    Y. Zhang, Self-interacting dark matter without direct detection constraints, Phys. Dark Univ. 15 (2017) 82 [arXiv:1611.03492] [INSPIRE].
  41. [41]
    A. Ahmed, M. Duch, B. Grzadkowski and M. Iglicki, Multi-component dark matter: the vector and fermion case, arXiv:1710.01853 [INSPIRE].
  42. [42]
    G. Steigman, CMB constraints on the thermal WIMP mass and annihilation cross section, Phys. Rev. D 91 (2015) 083538 [arXiv:1502.01884] [INSPIRE].ADSGoogle Scholar
  43. [43]
    J.L. Feng and J. Smolinsky, Impact of a resonance on thermal targets for invisible dark photon searches, Phys. Rev. D 96 (2017) 095022 [arXiv:1707.03835] [INSPIRE].ADSGoogle Scholar
  44. [44]
    B. Li and Y.-F. Zhou, Direct detection of dark matter with resonant annihilation, Commun. Theor. Phys. 64 (2015) 119 [arXiv:1503.08281] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    G.R. Dvali, G. Gabadadze and M.A. Shifman, (Quasi)localized gauge field on a brane: Dissipating cosmic radiation to extra dimensions?, Phys. Lett. B 497 (2001) 271 [hep-th/0010071] [INSPIRE].
  46. [46]
    M. Carena, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Opaque branes in warped backgrounds, Phys. Rev. D 67 (2003) 096006 [hep-ph/0212307] [INSPIRE].
  47. [47]
    M. Carena, T.M.P. Tait and C.E.M. Wagner, Branes and orbifolds are opaque, Acta Phys. Polon. B 33 (2002) 2355 [hep-ph/0207056] [INSPIRE].
  48. [48]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Physics of brane kinetic terms, Acta Phys. Polon. B 34 (2003) 5511 [hep-ph/0310353] [INSPIRE].
  49. [49]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Bulk fields with general brane kinetic terms, JHEP 02 (2003) 051 [hep-th/0302023] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  50. [50]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Brane localized kinetic terms in the Randall-Sundrum model, Phys. Rev. D 68 (2003) 045002 [hep-ph/0212279] [INSPIRE].
  51. [51]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Brane localized curvature for warped gravitons, JHEP 08 (2003) 034 [hep-ph/0305086] [INSPIRE].
  52. [52]
    A. Muck, A. Pilaftsis and R. Ruckl, Minimal higher dimensional extensions of the standard model and electroweak observables, Phys. Rev. D 65 (2002) 085037 [hep-ph/0110391] [INSPIRE].
  53. [53]
    T. Flacke, A. Menon and D.J. Phalen, Non-minimal universal extra dimensions, Phys. Rev. D 79 (2009) 056009 [arXiv:0811.1598] [INSPIRE].ADSGoogle Scholar
  54. [54]
    D. Sperka, Measurements of the BEH scalar mass and other couplings in ATLAS and CMS, talk given at the 53rd Rencontres de Moriond Electroweak Interactions and Unified Theories, March 10–17, La Thuile, Italy (2018).Google Scholar
  55. [55]
    A.C. Marini, Rare decays of the Higgs boson with CMS, talk given at the 53rd Rencontres de Moriond Electroweak Interactions and Unified Theories, March 10–17, La Thuile, Italy (2018).Google Scholar
  56. [56]
    SENSEI collaboration, T.T. Yu, New ideas for sub-GeV dark matter direct detection, talk given at the 2018 UCLA Dark Matter meeting, February 21–23, UCLA, Los Angeles, U.S.A. (2018).Google Scholar
  57. [57]
    R. Essig, T. Volansky and T.-T. Yu, New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon, Phys. Rev. D 96 (2017) 043017 [arXiv:1703.00910] [INSPIRE].ADSGoogle Scholar
  58. [58]
    R. Essig et al., Direct detection of sub-GeV dark matter with semiconductor targets, JHEP 05 (2016) 046 [arXiv:1509.01598] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    HPS collaboration, N. Baltzell et al., The heavy photon search beamline and its performance, Nucl. Instrum. Meth. A 859 (2017) 69 [arXiv:1612.07821] [INSPIRE].
  60. [60]
  61. [61]
    T. Raubenheimer et al., DASEL: Dark Sector Experiments at LCLS-II, arXiv:1801.07867 [INSPIRE].
  62. [62]
    S.J. Huber and Q. Shafi, Seesaw mechanism in warped geometry, Phys. Lett. B 583 (2004) 293 [hep-ph/0309252] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.

Personalised recommendations