Universal structure of covariant holographic two-point functions in massless higher-order gravities

  • Yue-Zhou Li
  • H. LüEmail author
  • Zhan-Feng Mai
Open Access
Regular Article - Theoretical Physics


We consider massless higher-order gravities in general D = d + 1 dimensions, which are Einstein gravity extended with higher-order curvature invariants in such a way that the linearized spectrum around the AdS vacua involves only the massless graviton. We derive the covariant holographic two-point functions and find that they have a universal structure. In particular, the theory-dependent overall coefficient factor \( {\mathcal{C}}_T \) can be universally expressed by \( \left(d - 1\right){\mathcal{C}}_T = \ell \left(\partial a/\partial \ell \right) \), where a is the holographic a-charge and is the AdS radius. We verify this relation in quasi-topological Ricci polynomial, Einstein-Gauss-Bonnet, Einstein-Lovelock and Einstein cubic gravities. In d = 4, we also find an intriguing relation between the holographic c and a charges, namely \( c=\frac{1}{3}\ell \left(\partial a/\partial \ell \right) \), which also implies \( {\mathcal{C}}_T=c \).


AdS-CFT Correspondence Classical Theories of Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. de Boer, The holographic renormalization group, Fortsch. Phys. 49 (2001) 339 [hep-th/0101026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].
  4. [4]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  6. [6]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT d /AdS d+1 correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].
  8. [8]
    W. Mueck and K.S. Viswanathan, Conformal field theory correlators from classical scalar field theory on AdS d+1, Phys. Rev. D 58 (1998) 041901 [hep-th/9804035] [INSPIRE].
  9. [9]
    H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [INSPIRE].
  10. [10]
    E. Keski-Vakkuri, Bulk and boundary dynamics in BTZ black holes, Phys. Rev. D 59 (1999) 104001 [hep-th/9808037] [INSPIRE].
  11. [11]
    K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].
  12. [12]
    H. Lü and C.N. Pope, Critical gravity in four dimensions, Phys. Rev. Lett. 106 (2011) 181302 [arXiv:1101.1971] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Deser, H. Liu, H. Lü, C.N. Pope, T.C. Sisman and B. Tekin, Critical points of D-dimensional extended gravities, Phys. Rev. D 83 (2011) 061502 [arXiv:1101.4009] [INSPIRE].
  14. [14]
    N. Johansson, A. Naseh and T. Zojer, Holographic two-point functions for 4d log-gravity, JHEP 09 (2012) 114 [arXiv:1205.5804] [INSPIRE].
  15. [15]
    A. Ghodsi, B. Khavari and A. Naseh, Holographic two-point functions in conformal gravity, JHEP 01 (2015) 137 [arXiv:1411.3158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    B. Tekin, Particle content of quadratic and f (R μνσρ) theories in (A)dS, Phys. Rev. D 93 (2016) 101502 [arXiv:1604.00891] [INSPIRE].
  18. [18]
    P. Bueno and P.A. Cano, Einsteinian cubic gravity, Phys. Rev. D 94 (2016) 104005 [arXiv:1607.06463] [INSPIRE].
  19. [19]
    P. Bueno, P.A. Cano, V.S. Min and M.R. Visser, Aspects of general higher-order gravities, Phys. Rev. D 95 (2017) 044010 [arXiv:1610.08519] [INSPIRE].
  20. [20]
    Y.-Z. Li, H.-S. Liu and H. Lü, Quasi-topological Ricci polynomial gravities, JHEP 02 (2018) 166 [arXiv:1708.07198] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  21. [21]
    M.H. Dehghani, A. Bazrafshan, R.B. Mann, M.R. Mehdizadeh, M. Ghanaatian and M.H. Vahidinia, Black holes in quartic quasitopological gravity, Phys. Rev. D 85 (2012) 104009 [arXiv:1109.4708] [INSPIRE].
  22. [22]
    A. Karasu, E. Kenar and B. Tekin, Minimal extension of Einstein’s theory: the quartic gravity, Phys. Rev. D 93 (2016) 084040 [arXiv:1602.02567] [INSPIRE].
  23. [23]
    P. Bueno, P.A. Cano, A.O. Lasso and P.F. Ramírez, f(Lovelock) theories of gravity, JHEP 04 (2016) 028 [arXiv:1602.07310] [INSPIRE].
  24. [24]
    A. Cisterna, L. Guajardo, M. Hassaine and J. Oliva, Quintic quasi-topological gravity, JHEP 04 (2017) 066 [arXiv:1702.04676] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    R.A. Hennigar, D. Kubizňák and R.B. Mann, Generalized quasitopological gravity, Phys. Rev. D 95 (2017) 104042 [arXiv:1703.01631] [INSPIRE].
  26. [26]
    J. Ahmed, R.A. Hennigar, R.B. Mann and M. Mir, Quintessential quartic quasi-topological quartet, JHEP 05 (2017) 134 [arXiv:1703.11007] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    X.-H. Feng, H. Huang, S.-L. Li, H. Lü and H. Wei, Cosmological time crystals from Einstein-cubic gravities, arXiv:1807.01720 [INSPIRE].
  28. [28]
    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    J. Erdmenger and H. Osborn, Conserved currents and the energy momentum tensor in conformally invariant theories for general dimensions, Nucl. Phys. B 483 (1997) 431 [hep-th/9605009] [INSPIRE].
  30. [30]
    C. Corianò, L. Delle Rose, E. Mottola and M. Serino, Graviton vertices and the mapping of anomalous correlators to momentum space for a general conformal field theory, JHEP 08 (2012) 147 [arXiv:1203.1339] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Buchel, J. Escobedo, R.C. Myers, M.F. Paulos, A. Sinha and M. Smolkin, Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    Y.-Z. Li, H. Lü and J.-B. Wu, Causality and a-theorem constraints on Ricci polynomial and Riemann cubic gravities, Phys. Rev. D 97 (2018) 024023 [arXiv:1711.03650] [INSPIRE].
  33. [33]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [INSPIRE].
  37. [37]
    M. Blau, K.S. Narain and E. Gava, On subleading contributions to the AdS/CFT trace anomaly, JHEP 09 (1999) 018 [hep-th/9904179] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].
  39. [39]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    D. Marolf, W. Kelly and S. Fischetti, Conserved charges in asymptotically (locally) AdS spacetimes, in Springer handbook of spacetime, Springer, Berlin, Heidelberg, Germany, (2014), pg. 381 [arXiv:1211.6347] [INSPIRE].
  42. [42]
    Y.-X. Chen, H. Lü and K.-N. Shao, Linearized modes in extended and critical gravities, Class. Quant. Grav. 29 (2012) 085017 [arXiv:1108.5184] [INSPIRE].
  43. [43]
    H. Lü and K.-N. Shao, Solutions of free higher spins in AdS, Phys. Lett. B 706 (2011) 106 [arXiv:1110.1138] [INSPIRE].
  44. [44]
    R.C. Myers and B. Robinson, Black holes in quasi-topological gravity, JHEP 08 (2010) 067 [arXiv:1003.5357] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    J.T. Liu and W.A. Sabra, Hamilton-Jacobi counterterms for Einstein-Gauss-Bonnet gravity, Class. Quant. Grav. 27 (2010) 175014 [arXiv:0807.1256] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    Z.-Y. Fan, B. Chen and H. Lü, Criticality in Einstein-Gauss-Bonnet gravity: gravity without graviton, Eur. Phys. J. C 76 (2016) 542 [arXiv:1606.02728] [INSPIRE].
  47. [47]
    S.C. Davis, Generalized Israel junction conditions for a Gauss-Bonnet brane world, Phys. Rev. D 67 (2003) 024030 [hep-th/0208205] [INSPIRE].
  48. [48]
    H.-S. Liu, H. Lü and C.N. Pope, Holographic heat current as Noether current, JHEP 09 (2017) 146 [arXiv:1708.02329] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    Y.-Z. Li and H. Lü, a-theorem for Horndeski gravity at the critical point, Phys. Rev. D 97 (2018) 126008 [arXiv:1803.08088] [INSPIRE].
  50. [50]
    G. Alkaç and B. Tekin, Holographic c-theorem and Born-Infeld gravity theories, Phys. Rev. D 98 (2018) 046013 [arXiv:1805.07963] [INSPIRE].
  51. [51]
    N. Deruelle, M. Sasaki, Y. Sendouda and D. Yamauchi, Hamiltonian formulation of f(Riemann) theories of gravity, Prog. Theor. Phys. 123 (2010) 169 [arXiv:0908.0679] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    T.C. Sisman, I. Gullu and B. Tekin, All unitary cubic curvature gravities in D dimensions, Class. Quant. Grav. 28 (2011) 195004 [arXiv:1103.2307] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    J. Oliva and S. Ray, A new cubic theory of gravity in five dimensions: black hole, Birkhoff’s theorem and C-function, Class. Quant. Grav. 27 (2010) 225002 [arXiv:1003.4773] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP 08 (2010) 035 [arXiv:1004.2055] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    P. Bueno, P.A. Cano and A. Ruipérez, Holographic studies of Einsteinian cubic gravity, JHEP 03 (2018) 150 [arXiv:1802.00018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Center for Joint Quantum Studies and Department of Physics, School of ScienceTianjin UniversityTianjinChina

Personalised recommendations