Advertisement

The holographic entropy zoo

  • Alex May
  • Eliot Hijano
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

We study the holographic dual of a two parameter family of quantities known as the α-z divergences. Many familiar information theoretic quantities occur within this family, including the relative entropy, fidelity, and collision relative entropy. We find explicit bulk expressions for the boundary divergences to second order in a state perturbation whenever α is an integer and z ≥ 0, as well as when z ∈ {0, ∞} and α ∈ ℝ. Our results apply for perturbations around an arbitrary background state and in any dimension, under the assumption of the equality of bulk and boundary modular flows.

Keywords

AdS-CFT Correspondence Classical Theories of Gravity Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
  2. [2]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    N. Lashkari and M. Van Raamsdonk, Canonical energy is quantum Fisher information, JHEP 04 (2016) 153 [arXiv:1508.00897] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  6. [6]
    M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Distance between quantum states and gauge-gravity duality, Phys. Rev. Lett. 115 (2015) 261602 [arXiv:1507.07555] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K. Umemoto and T. Takayanagi, Entanglement of purification through holographic duality, Nature Phys. 14 (2018) 573 [arXiv:1708.09393] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P. Nguyen, T. Devakul, M.G. Halbasch, M.P. Zaletel and B. Swingle, Entanglement of purification: from spin chains to holography, JHEP 01 (2018) 098 [arXiv:1709.07424] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic complexity equals bulk action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys. 64 (2016) 44 [arXiv:1403.5695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    K.M. Audenaert and N. Datta, α-z-relative Rényi entropies, J. Math. Phys. 56 (2015) 022202 [arXiv:1310.7178].
  12. [12]
    M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr and M. Tomamichel, On quantum Rényi entropies: a new generalization and some properties, J. Math. Phys. 54 (2013) 122203.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    D. Petz, Quasi-entropies for finite quantum systems, Rept. Math. Phys. 23 (1986) 57.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151 [arXiv:1704.05464] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].
  17. [17]
    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
  18. [18]
    T. Faulkner, F.M. Haehl, E. Hijano, O. Parrikar, C. Rabideau and M. Van Raamsdonk, Nonlinear gravity from entanglement in conformal field theories, JHEP 08 (2017) 057 [arXiv:1705.03026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    N. Lashkari, Relative entropies in conformal field theory, Phys. Rev. Lett. 113 (2014) 051602 [arXiv:1404.3216] [INSPIRE].
  20. [20]
    A. Bernamonti, F. Galli, R.C. Myers and J. Oppenheim, Holographic second laws of black hole thermodynamics, JHEP 07 (2018) 111 [arXiv:1803.03633] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Rényi, On measures of entropy and information, tech. rep., Hungarian Academy of Sciences, Budapest, Hungary, (1961).Google Scholar
  22. [22]
    M. Mosonyi and T. Ogawa, Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies, Commun. Math. Phys. 334 (2014) 1617.ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    S. Vinjanampathy and J. Anders, Quantum thermodynamics, Contemp. Phys. 57 (2016) 545.Google Scholar
  24. [24]
    J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle and M. Walter, Entanglement wedge reconstruction via universal recovery channels, arXiv:1704.05839 [INSPIRE].
  25. [25]
    F.M. Haehl, E. Hijano, O. Parrikar and C. Rabideau, Higher curvature gravity from entanglement in conformal field theories, Phys. Rev. Lett. 120 (2018) 201602 [arXiv:1712.06620] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    R. Jozsa, Fidelity for mixed quantum states, J. Mod. Opt. 41 (1994) 2315.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Berta, P.J. Coles and S. Wehner, An equality between entanglement and uncertainty, arXiv:1302.5902.
  28. [28]
    F. Dupuis, M. Berta, J. Wullschleger and R. Renner, One-shot decoupling, Commun. Math. Phys. 328 (2014) 251.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    R. Renner, Security of quantum key distribution, Int. J. Quant. Inf. 06 (2008) 1.CrossRefzbMATHGoogle Scholar
  30. [30]
    F. Dupuis, O. Fawzi and S. Wehner, Entanglement sampling and applications, IEEE Trans. Inform. Theory 61 (2015) 1093.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    S. Beigi and A. Gohari, Quantum achievability proof via collision relative entropy, IEEE Trans. Inform. Theory 60 (2014) 7980.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    R. Konig, R. Renner and C. Schaffner, The operational meaning of min- and max-entropy, IEEE Trans. Inform. Theory 55 (2009) 4337.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    N. Datta, Min- and max-relative entropies and a new entanglement monotone, IEEE Trans. Inform. Theory 55 (2009) 2816.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    E.A. Carlen, R.L. Frank and E.H. Lieb, Inequalities for quantum divergences and the Audenaert-Datta conjecture, arXiv:1806.03985.
  35. [35]
    D. Petz and C. Ghinea, Introduction to quantum Fisher information, in Quantum probability and related topics, World Scientific, Singapore, (2011), pg. 261.Google Scholar
  36. [36]
    H. Hasegawa, α-divergence of the non-commutative information geometry, Rept. Math. Phys. 33 (1993) 87.Google Scholar
  37. [37]
    M. Botta-Cantcheff, P. Martínez and G.A. Silva, On excited states in real-time AdS/CFT, JHEP 02 (2016) 171 [arXiv:1512.07850] [INSPIRE].
  38. [38]
    K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101 (2008) 081601 [arXiv:0805.0150] [INSPIRE].
  39. [39]
    A. Christodoulou and K. Skenderis, Holographic construction of excited CFT states, JHEP 04 (2016) 096 [arXiv:1602.02039] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  40. [40]
    D. Marolf, O. Parrikar, C. Rabideau, A. Izadi Rad and M. Van Raamsdonk, From Euclidean sources to Lorentzian spacetimes in holographic conformal field theories, JHEP 06 (2018) 077 [arXiv:1709.10101] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett. 117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].
  42. [42]
    A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    S. Hollands and R.M. Wald, Stability of black holes and black branes, Commun. Math. Phys. 321 (2013) 629 [arXiv:1201.0463] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    S. Banerjee, A. Bhattacharyya, A. Kaviraj, K. Sen and A. Sinha, Constraining gravity using entanglement in AdS/CFT, JHEP 05 (2014) 029 [arXiv:1401.5089] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Banerjee, A. Kaviraj and A. Sinha, Nonlinear constraints on gravity from entanglement, Class. Quant. Grav. 32 (2015) 065006 [arXiv:1405.3743] [INSPIRE].
  46. [46]
    J. Lin, M. Marcolli, H. Ooguri and B. Stoica, Locality of gravitational systems from entanglement of conformal field theories, Phys. Rev. Lett. 114 (2015) 221601 [arXiv:1412.1879] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    N. Lashkari, C. Rabideau, P. Sabella-Garnier and M. Van Raamsdonk, Inviolable energy conditions from entanglement inequalities, JHEP 06 (2015) 067 [arXiv:1412.3514] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    J. Bhattacharya, V.E. Hubeny, M. Rangamani and T. Takayanagi, Entanglement density and gravitational thermodynamics, Phys. Rev. D 91 (2015) 106009 [arXiv:1412.5472] [INSPIRE].
  49. [49]
    N. Lashkari, J. Lin, H. Ooguri, B. Stoica and M.V. Raamsdonk, Gravitational positive energy theorems from information inequalities, Prog. Theor. Exper. Phys. 2016 (2016) 12C109.Google Scholar
  50. [50]
    D. Neuenfeld, K. Saraswat and M. Van Raamsdonk, Positive gravitational subsystem energies from CFT cone relative entropies, JHEP 06 (2018) 050 [arXiv:1802.01585] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    F. Brandão, M. Horodecki, N. Ng, J. Oppenheim and S. Wehner, The second laws of quantum thermodynamics, Proc. Nat. Acad. Sci. 112 (2015) 3275.ADSCrossRefGoogle Scholar
  52. [52]
    D. Harlow, The Ryu-Takayanagi formula from quantum error correction, Commun. Math. Phys. 354 (2017) 865 [arXiv:1607.03901] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.The University of British ColumbiaVancouverCanada

Personalised recommendations