Advertisement

Complementarity of DM searches in a consistent simplified model: the case of Z

  • Thomas Jacques
  • Andrey Katz
  • Enrico Morgante
  • Davide RaccoEmail author
  • Mohamed Rameez
  • Antonio Riotto
Open Access
Regular Article - Theoretical Physics

Abstract

We analyze the constraints from direct and indirect detection on fermionic Majorana Dark Matter (DM). Because the interaction with the Standard Model (SM) particles is spin-dependent, a priori the constraints that one gets from neutrino telescopes, the LHC, direct and indirect detection experiments are comparable. We study the complementarity of these searches in a particular example, in which a heavy Z mediates the interactions between the SM and the DM. We find that for heavy dark matter indirect detection provides the strongest bounds on this scenario, while IceCube bounds are typically stronger than those from direct detection. The LHC constraints are dominant for smaller dark matter masses. These light masses are less motivated by thermal relic abundance considerations. We show that the dominant annihilation channels of the light DM in the Sun and the Galactic Center are either \( b\overline{b} \) or \( t\overline{t} \), while the heavy DM annihilation is completely dominated by Zh channel. The latter produces a hard neutrino spectrum which has not been previously analyzed. We study the neutrino spectrum yielded by DM and recast IceCube constraints to allow proper comparison with constraints from direct and indirect detection experiments and LHC exclusions.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  2. [2]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  3. [3]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
  4. [4]
    Y.G. Kim and K.Y. Lee, The minimal model of fermionic dark matter, Phys. Rev. D 75 (2007) 115012 [hep-ph/0611069] [INSPIRE].
  5. [5]
    PICO collaboration, C. Amole et al., Dark matter search results from the PICO-60 CF 3 I bubble chamber, Phys. Rev. D 93 (2016) 052014 [arXiv:1510.07754] [INSPIRE].
  6. [6]
    LUX collaboration, D.S. Akerib et al., Results on the spin-dependent scattering of weakly interacting massive particles on nucleons from the Run 3 data of the LUX experiment, Phys. Rev. Lett. 116 (2016) 161302 [arXiv:1602.03489] [INSPIRE].
  7. [7]
    A. Gould, Cosmological density of WIMPs from solar and terrestrial annihilations, Astrophys. J. 388 (1992) 338 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    IceCube collaboration, M.G. Aartsen et al., Search for dark matter annihilations in the Sun with the 79-string IceCube detector, Phys. Rev. Lett. 110 (2013) 131302 [arXiv:1212.4097] [INSPIRE].
  9. [9]
    IceCube collaboration, M.G. Aartsen et al., Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry, JCAP 04 (2016) 022 [arXiv:1601.00653] [INSPIRE].
  10. [10]
    G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, Phys. Lett. B 728 (2014) 412 [arXiv:1307.2253] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Busoni, A. De Simone, J. Gramling, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, part II: complete analysis for the s-channel, JCAP 06 (2014) 060 [arXiv:1402.1275] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    G. Busoni, A. De Simone, T. Jacques, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, part III: analysis for the t-channel, JCAP 09 (2014) 022 [arXiv:1405.3101] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    O. Buchmueller, M.J. Dolan and C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Racco, A. Wulzer and F. Zwirner, Robust collider limits on heavy-mediator dark matter, JHEP 05 (2015) 009 [arXiv:1502.04701] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. De Simone and T. Jacques, Simplified models vs. effective field theory approaches in dark matter searches, Eur. Phys. J. C 76 (2016) 367 [arXiv:1603.08002] [INSPIRE].
  16. [16]
    J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP 11 (2010) 042 [arXiv:1008.1591] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The effective field theory of dark matter direct detection, JCAP 02 (2013) 004 [arXiv:1203.3542] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, Model independent direct detection analyses, arXiv:1211.2818 [INSPIRE].
  19. [19]
    N. Anand, A.L. Fitzpatrick and W.C. Haxton, Weakly interacting massive particle-nucleus elastic scattering response, Phys. Rev. C 89 (2014) 065501 [arXiv:1308.6288] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  21. [21]
    M. Cirelli and A. Strumia, Minimal dark matter: model and results, New J. Phys. 11 (2009) 105005 [arXiv:0903.3381] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 487] [hep-ph/0406088] [INSPIRE].
  24. [24]
    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].
  26. [26]
    Z. Bern, P. Gondolo and M. Perelstein, Neutralino annihilation into two photons, Phys. Lett. B 411 (1997) 86 [hep-ph/9706538] [INSPIRE].
  27. [27]
    L. Bergstrom and P. Ullio, Full one loop calculation of neutralino annihilation into two photons, Nucl. Phys. B 504 (1997) 27 [hep-ph/9706232] [INSPIRE].
  28. [28]
    S. Matsumoto, S. Mukhopadhyay and Y.-L.S. Tsai, Effective theory of WIMP dark matter supplemented by simplified models: singlet-like Majorana fermion case, Phys. Rev. D 94 (2016) 065034 [arXiv:1604.02230] [INSPIRE].ADSGoogle Scholar
  29. [29]
    O. Lebedev and Y. Mambrini, Axial dark matter: The case for an invisible Z , Phys. Lett. B 734 (2014) 350 [arXiv:1403.4837] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    N.F. Bell, Y. Cai and R.K. Leane, Mono-W dark matter signals at the LHC: simplified model analysis, JCAP 01 (2016) 051 [arXiv:1512.00476] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    O. Buchmueller, M.J. Dolan, S.A. Malik and C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: vector mediators, JHEP 01 (2015) 037 [arXiv:1407.8257] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Blennow, J. Herrero-Garcia, T. Schwetz and S. Vogl, Halo-independent tests of dark matter direct detection signals: local DM density, LHC and thermal freeze-out, JCAP 08 (2015) 039 [arXiv:1505.05710] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Alves, S. Profumo and F.S. Queiroz, The dark Z portal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark matter complementarity and the Z portal, Phys. Rev. D 92 (2015) 083004 [arXiv:1501.03490] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dirac-fermionic dark matter in U(1)X models, JHEP 10 (2015) 076 [arXiv:1506.06767] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    H. An, X. Ji and L.-T. Wang, Light dark matter and Z dark force at colliders, JHEP 07 (2012) 182 [arXiv:1202.2894] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    H. An, R. Huo and L.-T. Wang, Searching for low mass dark portal at the LHC, Phys. Dark Univ. 2 (2013) 50 [arXiv:1212.2221] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators, JHEP 07 (2012) 123 [arXiv:1204.3839] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Z and dark matter: LHC vs. LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].
  41. [41]
    I.M. Shoemaker and L. Vecchi, Unitarity and monojet bounds on models for DAMA, CoGeNT and CRESST-II, Phys. Rev. D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M.T. Frandsen, F. Kahlhoefer, S. Sarkar and K. Schmidt-Hoberg, Direct detection of dark matter in models with a light Z , JHEP 09 (2011) 128 [arXiv:1107.2118] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    P. Gondolo, P. Ko and Y. Omura, Light dark matter in leptophobic Z models, Phys. Rev. D 85 (2012) 035022 [arXiv:1106.0885] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Fairbairn and J. Heal, Complementarity of dark matter searches at resonance, Phys. Rev. D 90 (2014) 115019 [arXiv:1406.3288] [INSPIRE].ADSGoogle Scholar
  45. [45]
    P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining dark sectors at colliders: beyond the effective theory approach, Phys. Rev. D 91 (2015) 055009 [arXiv:1411.0535] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg, Constraining dark sectors with monojets and dijets, JHEP 07 (2015) 089 [arXiv:1503.05916] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    T. Jacques and K. Nordström, Mapping monojet constraints onto simplified dark matter models, JHEP 06 (2015) 142 [arXiv:1502.05721] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A.J. Brennan, M.F. McDonald, J. Gramling and T.D. Jacques, Collide and conquer: constraints on simplified dark matter models using mono-X collider searches, JHEP 05 (2016) 112 [arXiv:1603.01366] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    H. Dreiner, D. Schmeier and J. Tattersall, Contact interactions probe effective dark matter models at the LHC, Europhys. Lett. 102 (2013) 51001 [arXiv:1303.3348] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    K. Ghorbani and H. Ghorbani, Two-portal dark matter, Phys. Rev. D 91 (2015) 123541 [arXiv:1504.03610] [INSPIRE].ADSGoogle Scholar
  51. [51]
    P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra, A classification of dark matter candidates with primarily spin-dependent interactions with matter, arXiv:1003.1912 [INSPIRE].
  52. [52]
    J. Abdallah et al., Simplified models for dark matter and missing energy searches at the LHC, arXiv:1409.2893 [INSPIRE].
  53. [53]
    S. Weinberg, The quantum theory of fields. Volume 2: modern applications, Cambridge University Press, Cambridge U.K. (2013).Google Scholar
  54. [54]
    R.W. Robinett and J.L. Rosner, Mass scales in grand unified theories, Phys. Rev. D 26 (1982) 2396 [INSPIRE].ADSGoogle Scholar
  55. [55]
    CMS collaboration, Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04 (2015) 025 [arXiv:1412.6302] [INSPIRE].
  56. [56]
    CMS collaboration, Measurement of inclusive W and Z boson production cross sections in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 112 (2014) 191802 [arXiv:1402.0923] [INSPIRE].
  57. [57]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    CMS collaboration, Search for a Narrow Resonance Produced in 13 TeV pp collisions decaying to electron pair or muon pair final states, CMS-PAS-EXO-15-005 (2015).
  59. [59]
    F. D’Eramo, B.J. Kavanagh and P. Panci, You can hide but you have to run: direct detection with vector mediators, JHEP 08 (2016) 111 [arXiv:1605.04917] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  62. [62]
    U. Haisch and F. Kahlhoefer, On the importance of loop-induced spin-independent interactions for dark matter direct detection, JCAP 04 (2013) 050 [arXiv:1302.4454] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 10 (2013) 019 [arXiv:1307.5955] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].
  65. [65]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  66. [66]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on light Majorana dark matter from colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the frontier of dark matter direct detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    DES, Fermi-LAT collaboration, A. Drlica-Wagner et al., Search for Gamma-Ray Emission from DES dwarf spheroidal galaxy candidates with Fermi-LAT data, Astrophys. J. 809 (2015) L4 [arXiv:1503.02632] [INSPIRE].
  69. [69]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for dark matter annihilation from Milky Way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  70. [70]
    J.F. Navarro, C.S. Frenk and S.D.M. White, A universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].
  71. [71]
    HESS collaboration, H. Abdallah et al., Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S., Phys. Rev. Lett. 117 (2016) 111301 [arXiv:1607.08142] [INSPIRE].
  72. [72]
    Fermi-LAT collaboration, M. Ackermann et al., Constraints on the galactic halo dark matter from Fermi-LAT diffuse measurements, Astrophys. J. 761 (2012) 91 [arXiv:1205.6474] [INSPIRE].
  73. [73]
    T. Daylan et al., The characterization of the gamma-ray signal from the central Milky Way: a case for annihilating dark matter, Phys. Dark Univ. 12 (2016) 1 [arXiv:1402.6703] [INSPIRE].CrossRefGoogle Scholar
  74. [74]
    T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino dark matter under siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J. Fan and M. Reece, In Wino veritas? Indirect searches shed light on neutralino dark matter, JHEP 10 (2013) 124 [arXiv:1307.4400] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    M. Cirelli et al., PPPC 4 DM ID: a Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 10 (2012) E01] [arXiv:1012.4515] [INSPIRE].
  77. [77]
    IceCube collaboration, A. Achterberg et al., First year performance of the IceCube neutrino telescope, Astropart. Phys. 26 (2006) 155 [astro-ph/0604450] [INSPIRE].
  78. [78]
    IceCube collaboration, T. Montaruli, Neutrino Physics and Astrophysics with IceCube, in the proceedings of Cosmic Ray International Seminar: the status and the future of the UHE Cosmic Ray Physics in the post LHC era (CRIS2015), September 14-16, Gallipoli, Italy (2015), arXiv:1512.07978 [INSPIRE].
  79. [79]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
  80. [80]
    P. Ciafaloni, D. Comelli, A. Riotto, F. Sala, A. Strumia and A. Urbano, Weak corrections are relevant for dark matter indirect detection, JCAP 03 (2011) 019 [arXiv:1009.0224] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    P. Baratella, M. Cirelli, A. Hektor, J. Pata, M. P IIBeleht and A. Strumia, PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun, JCAP 03 (2014) 053 [arXiv:1312.6408] [INSPIRE].
  82. [82]
    J. Braun, J. Dumm, F. De Palma, C. Finley, A. Karle and T. Montaruli, Methods for point source analysis in high energy neutrino telescopes, Astropart. Phys. 29 (2008) 299 [arXiv:0801.1604] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    IceCube collaboration, M. Rameez et al., Search for dark matter annihilations in the Sun using the completed IceCube neutrino telescope, PoS (ICRC2015) 1209.
  84. [84]
    G. Punzi, Comments on likelihood fits with variable resolution, eConf C 030908 (2003) WELT002 [physics/0401045] [INSPIRE].
  85. [85]
    M. Drees and M.M. Nojiri, The neutralino relic density in minimal N = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [INSPIRE].
  86. [86]
    K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    G.J. Gounaris, J. Layssac and F.M. Renard, New and standard physics contributions to anomalous Z and γ selfcouplings, Phys. Rev. D 62 (2000) 073013 [hep-ph/0003143] [INSPIRE].
  88. [88]
    R. Catena and B. Schwabe, Form factors for dark matter capture by the Sun in effective theories, JCAP 04 (2015) 042 [arXiv:1501.03729] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    J. Blumenthal, P. Gretskov, M. Krämer and C. Wiebusch, Effective field theory interpretation of searches for dark matter annihilation in the Sun with the IceCube Neutrino Observatory, Phys. Rev. D 91 (2015) 035002 [arXiv:1411.5917] [INSPIRE].ADSGoogle Scholar
  90. [90]
    J. Heisig, M. Krämer, M. Pellen and C. Wiebusch, Constraints on Majorana dark matter from the LHC and IceCube, Phys. Rev. D 93 (2016) 055029 [arXiv:1509.07867] [INSPIRE].ADSGoogle Scholar
  91. [91]
    G. Passarino and M.J.G. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    L.D. Landau, On the angular momentum of a system of two photons, Dokl. Akad. Nauk Ser. Fiz. 60 (1948) 207.Google Scholar
  93. [93]
    C.-N. Yang, Selection rules for the dematerialization of a particle into two photons, Phys. Rev. 77 (1950) 242 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  94. [94]
    S. Weinberg, The quantum theory of fields. Volume 1: foundations, Cambridge University Press, Cambridge U.K. (2005).Google Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Thomas Jacques
    • 1
  • Andrey Katz
    • 2
    • 3
  • Enrico Morgante
    • 3
  • Davide Racco
    • 3
    Email author
  • Mohamed Rameez
    • 4
  • Antonio Riotto
    • 3
  1. 1.SISSA and INFNTriesteItaly
  2. 2.Theory Division, CERNGeneva 23Switzerland
  3. 3.Département de Physique Théorique and Center for Astroparticle Physics (CAP)Université de GenèveGenève 4Switzerland
  4. 4.Département de Physique Nucléaire et CorpusculaireUniversité de GenèveGenève 4Switzerland

Personalised recommendations