Journal of High Energy Physics

, 2012:82 | Cite as

The effective field theory of cosmological large scale structures

  • John Joseph M. CarrascoEmail author
  • Mark P. Hertzberg
  • Leonardo Senatore
Open Access


Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is \( c_s^2 \approx {1}{0^{{ - {6}}}}{c^{2}} \) and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. The predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ⋍ 0.24h Mpc−1.


Cosmology of Theories beyond the SM Stochastic Processes Renormalization Regularization and Renormalons 


  1. [1]
    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    L. Senatore and M. Zaldarriaga, The effective field theory of multifield inflation, JHEP 04 (2012) 024 [arXiv:1009.2093] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Weinberg, The quantum theory of fields. Vol. 2: modern applications, Cambridge University Press, Cambridge U.K. (1996).Google Scholar
  4. [4]
    T. Baldauf, U. Seljak, L. Senatore and M. Zaldarriaga, Galaxy bias and non-linear structure formation in general relativity, JCAP 10 (2011) 031 [arXiv:1106.5507] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Baumann, A. Nicolis, L. Senatore and M. Zaldarriaga, Cosmological non-linearities as an effective fluid, arXiv:1004.2488 [INSPIRE].
  6. [6]
    F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, Large scale structure of the universe and cosmological perturbation theory, Phys. Rept. 367 (2002) 1 [astro-ph/0112551] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. [7]
    B. Jain and E. Bertschinger, Second order power spectrum and nonlinear evolution at high redshift, Astrophys. J. 431 (1994) 495 [astro-ph/9311070] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Shoji and E. Komatsu, Third-order perturbation theory with non-linear pressure, Astrophys. J. 700 (2009) 705 [arXiv:0903.2669] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Jeong and E. Komatsu, Perturbation theory reloaded: analytical calculation of non-linearity in baryonic oscillations in the real space matter power spectrum, Astrophys. J. 651 (2006) 619 [astro-ph/0604075] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Crocce and R. Scoccimarro, Renormalized cosmological perturbation theory, Phys. Rev. D 73 (2006) 063519 [astro-ph/0509418] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Crocce and R. Scoccimarro, Nonlinear evolution of baryon acoustic oscillations, Phys. Rev. D 77 (2008) 023533 [arXiv:0704.2783] [INSPIRE].ADSGoogle Scholar
  12. [12]
    T. Matsubara, Resumming cosmological perturbations via the Lagrangian picture: one-loop results in real space and in redshift space, Phys. Rev. D 77 (2008) 063530 [arXiv:0711.2521] [INSPIRE].ADSGoogle Scholar
  13. [13]
    P. McDonald, Dark matter clustering: a simple renormalization group approach, Phys. Rev. D 75 (2007) 043514 [astro-ph/0606028] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. Taruya and T. Hiramatsu, A closure theory for non-linear evolution of cosmological power spectra, arXiv:0708.1367 [INSPIRE].
  15. [15]
    K. Izumi and J. Soda, Renormalized Newtonian cosmic evolution with primordial non-gaussanity, Phys. Rev. D 76 (2007) 083517 [arXiv:0706.1604] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Matarrese and M. Pietroni, Baryonic acoustic oscillations via the renormalization group, Mod. Phys. Lett. A 23 (2008) 25 [astro-ph/0702653] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Matarrese and M. Pietroni, Resumming cosmic perturbations, JCAP 06 (2007) 026 [astro-ph/0703563] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Nishimichi, H. Ohmuro, M. Nakamichi, A. Taruya, K. Yahata, et al., Characteristic scales of baryon acoustic oscillations from perturbation theory: non-linearity and redshift-space distortion effects, arXiv:0705.1589 [INSPIRE].
  19. [19]
    R. Takahashi, Third order density perturbation and one-loop power spectrum in a dark energy dominated universe, Prog. Theor. Phys. 120 (2008) 549 [arXiv:0806.1437] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  20. [20]
    J. Carlson, M. White and N. Padmanabhan, A critical look at cosmological perturbation theory techniques, Phys. Rev. D 80 (2009) 043531 [arXiv:0905.0479] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A.L. Fitzpatrick, L. Senatore and M. Zaldarriaga, Contributions to the dark matter 3-pt function from the radiation era, JCAP 05 (2010) 004 [arXiv:0902.2814] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    K. Enqvist and G. Rigopoulos, Non-linear mode coupling and the growth of perturbations in LCDM, JCAP 03 (2011) 005 [arXiv:1008.2751] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Pietroni, G. Mangano, N. Saviano and M. Viel, Coarse-grained cosmological perturbation theory, JCAP 01 (2012) 019 [arXiv:1108.5203] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Tassev and M. Zaldarriaga, The mildly non-linear regime of structure formation, JCAP 04 (2012) 013 [arXiv:1109.4939] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Tassev and M. Zaldarriaga, Estimating CDM particle trajectories in the mildly non-linear regime of structure formation. Implications for the density field in real and redshift space, arXiv:1203.5785 [INSPIRE].
  26. [26]
    S. Tassev and M. Zaldarriaga, Towards an optimal reconstruction of baryon oscillations, arXiv:1203.6066 [INSPIRE].
  27. [27]
    L. Senatore and M. Zaldarriaga, On loops in inflation, JHEP 12 (2010) 008 [arXiv:0912.2734] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L. Senatore and M. Zaldarriaga, On loops in inflation II: IR effects in single clock inflation, arXiv:1203.6354 [INSPIRE].
  29. [29]
    G.L. Pimentel, L. Senatore and M. Zaldarriaga, On loops in inflation III: time independence of zeta in single clock inflation, JHEP 07 (2012) 166 [arXiv:1203.6651] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.J. Carrasco, S. Foreman and L. Senatore 1.5 loops in the effective field theory for large scale structures, work in progress.Google Scholar
  31. [31]
    McBride et al., in preparation.Google Scholar
  32. [32]
    P.S. Behroozi, R.H. Wechsler, H.-Y. Wu, M.T. Busha, A.A. Klypin, et al., Gravitationally consistent halo catalogs and merger trees for precision cosmology, arXiv:1110.4370 [] [INSPIRE].
  33. [33]
    H. Martel and W. Freudling Second-order perturbation theory in Omega is not equal to Friedmann models, Astrophys. J. 371 (1991) 1.ADSCrossRefGoogle Scholar
  34. [34]
    F. Bernardeau, Skewness and kurtosis in large scale cosmic fields, Astrophys. J. 433 (1994) 1 [astro-ph/9312026] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R. Scoccimarro, S. Colombi, J.N. Fry, J.A. Frieman, E. Hivon, et al., Nonlinear evolution of the bispectrum of cosmological perturbations, Astrophys. J. 496 (1998) 586 [astro-ph/9704075] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • John Joseph M. Carrasco
    • 1
    Email author
  • Mark P. Hertzberg
    • 1
    • 2
  • Leonardo Senatore
    • 1
    • 2
  1. 1.Stanford Institute for Theoretical Physics and Department of PhysicsStanford UniversityStanfordU.S.A.
  2. 2.Kavli Institute for Particle Astrophysics and CosmologyStanford University and SLACMenlo ParkU.S.A.

Personalised recommendations