Advertisement

Journal of High Energy Physics

, 2019:107 | Cite as

On some hypergeometric solutions of the conformal Ward identities of scalar 4-point functions in momentum space

  • Claudio Corianò
  • Matteo Maria MaglioEmail author
Open Access
Regular Article - Theoretical Physics
  • 58 Downloads

Abstract

We discuss specific hypergeometric solutions of the conformal Ward identities (CWI’s) of scalar 4-point functions of primary fields in momentum space, in d spacetime dimensions. We determine such solutions using various dual conformal ansätze (DCA’s). We start from a generic dual conformal correlator, and require it to be conformally covariant in coordinate space. The two requirements constrain such solutions to take a unique hypergeometric form. They describe correlators which are at the same time conformal and dual conformal in any dimension. These specific ansätze also show the existence of a link between 3- and 4-point functions of a CFT for such class of exact solutions, similarly to what found for planar ladder diagrams. We show that in d = 4 only the box diagram and its melonic variants, in free field theory, satisfies such conditions, the remaining solutions being nonperturbative. We then turn to the analysis of some approximate high energy fixed angle solutions of the CWI’s which also in this case take the form of generalized hypergeometric functions. We show that they describe the behaviour of the 4-point functions at large energy and momentum transfers, with a fixed −t/s. The equations, in this case, are solved by linear combinations of Lauricella functions of 3 variables and can be rewritten as generalized 4K integrals. In both cases the CWI’s alone are sufficient to identify such solutions and their special connection with generalized hypergeometric systems of equations.

Keywords

Conformal Field Theory Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].
  2. [2]
    D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques and Applications, Rev. Mod. Phys. 91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].
  3. [3]
    C. Corianò and M.M. Maglio, The general 3-graviton vertex (T T T ) of conformal field theories in momentum space in d = 4, Nucl. Phys. B 937 (2018) 56 [arXiv:1808.10221] [INSPIRE].
  4. [4]
    C. Corianò and M.M. Maglio, Renormalization, Conformal Ward Identities and the Origin of a Conformal Anomaly Pole, Phys. Lett. B 781 (2018) 283 [arXiv:1802.01501] [INSPIRE].
  5. [5]
    C. Corianò and M.M. Maglio, Exact Correlators from Conformal Ward Identities in Momentum Space and the Perturbative T J J Vertex, Nucl. Phys. B 938 (2019) 440 [arXiv:1802.07675] [INSPIRE].
  6. [6]
    A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in momentum space, JHEP 03 (2014) 111 [arXiv:1304.7760] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Bzowski, P. McFadden and K. Skenderis, Renormalised CFT 3-point functions of scalars, currents and stress tensors, JHEP 11 (2018) 159 [arXiv:1805.12100] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Bzowski, P. McFadden and K. Skenderis, Scalar 3-point functions in CFT: renormalisation, β-functions and anomalies, JHEP 03 (2016) 066 [arXiv:1510.08442] [INSPIRE].
  9. [9]
    A. Bzowski, P. McFadden and K. Skenderis, Renormalised 3-point functions of stress tensors and conserved currents in CFT, JHEP 11 (2018) 153 [arXiv:1711.09105] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    C. Corianò, L. Delle Rose, E. Mottola and M. Serino, Solving the Conformal Constraints for Scalar Operators in Momentum Space and the Evaluation of Feynmans Master Integrals, JHEP 07 (2013) 011 [arXiv:1304.6944] [INSPIRE].
  11. [11]
    A. Bzowski, P. McFadden and K. Skenderis, Evaluation of conformal integrals, JHEP 02 (2016) 068 [arXiv:1511.02357] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. Giannotti and E. Mottola, The Trace Anomaly and Massless Scalar Degrees of Freedom in Gravity, Phys. Rev. D 79 (2009) 045014 [arXiv:0812.0351] [INSPIRE].
  13. [13]
    R. Armillis, C. Corianò and L. Delle Rose, Conformal Anomalies and the Gravitational Effective Action: The T J J Correlator for a Dirac Fermion, Phys. Rev. D 81 (2010) 085001 [arXiv:0910.3381] [INSPIRE].
  14. [14]
    R. Armillis, C. Corianò and L. Delle Rose, Trace Anomaly, Massless Scalars and the Gravitational Coupling of QCD, Phys. Rev. D 82 (2010) 064023 [arXiv:1005.4173] [INSPIRE].
  15. [15]
    J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP 09 (2011) 045 [arXiv:1104.2846] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Bzowski, P. McFadden and K. Skenderis, Holographic predictions for cosmological 3-point functions, JHEP 03 (2012) 091 [arXiv:1112.1967] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    C. Corianò, L. Delle Rose and M. Serino, Three and Four Point Functions of Stress Energy Tensors in D = 3 for the Analysis of Cosmological Non-Gaussianities, JHEP 12 (2012) 090 [arXiv:1210.0136] [INSPIRE].
  18. [18]
    M.N. Chernodub, A. Cortijo and M.A.H. Vozmediano, Generation of a Nernst Current from the Conformal Anomaly in Dirac and Weyl Semimetals, Phys. Rev. Lett. 120 (2018) 206601 [arXiv:1712.05386] [INSPIRE].
  19. [19]
    N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities, arXiv:1811.00024 [INSPIRE].
  20. [20]
    P. Benincasa, From the flat-space S-matrix to the Wavefunction of the Universe, arXiv:1811.02515 [INSPIRE].
  21. [21]
    N. Arkani-Hamed and P. Benincasa, On the Emergence of Lorentz Invariance and Unitarity from the Scattering Facet of Cosmological Polytopes, arXiv:1811.01125 [INSPIRE].
  22. [22]
    N. Arkani-Hamed, P. Benincasa and A. Postnikov, Cosmological Polytopes and the Wavefunction of the Universe, arXiv:1709.02813 [INSPIRE].
  23. [23]
    J.M. Henn and J.C. Plefka, Scattering Amplitudes in Gauge Theories, Lect. Notes Phys. 883 (2014) 1 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    P. Benincasa, New structures in scattering amplitudes: a review, Int. J. Mod. Phys. A 29 (2014) 1430005 [arXiv:1312.5583] [INSPIRE].
  25. [25]
    A.I. Davydychev, Recursive algorithm of evaluating vertex type Feynman integrals, J. Phys. A 25 (1992) 5587 [INSPIRE].
  26. [26]
    N.I. Usyukina and A.I. Davydychev, An Approach to the evaluation of three and four point ladder diagrams, Phys. Lett. B 298 (1993) 363 [INSPIRE].
  27. [27]
    N.I. Usyukina and A.I. Davydychev, Exact results for three and four point ladder diagrams with an arbitrary number of rungs, Phys. Lett. B 305 (1993) 136 [INSPIRE].
  28. [28]
    D.J. Broadhurst and A.L. Kataev, Connections between deep inelastic and annihilation processes at next to next-to-leading order and beyond, Phys. Lett. B 315 (1993) 179 [hep-ph/9308274] [INSPIRE].
  29. [29]
    J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].
  31. [31]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].
  32. [32]
    B. Eden, P.S. Howe, C. Schubert, E. Sokatchev and P.C. West, Four point functions in N = 4 supersymmetric Yang-Mills theory at two loops, Nucl. Phys. B 557 (1999) 355 [hep-th/9811172] [INSPIRE].
  33. [33]
    B. Eden, C. Schubert and E. Sokatchev, Three loop four point correlator in N = 4 SYM, Phys. Lett. B 482 (2000) 309 [hep-th/0003096] [INSPIRE].
  34. [34]
    C. Corianò and A.R. White, Gauge theory high-energy behavior from j plane unitarity, Nucl. Phys. B 468 (1996) 175 [hep-ph/9510329] [INSPIRE].
  35. [35]
    C. Corianò, A.R. White and M. Wusthoff, NLO conformal symmetry in the Regge limit of QCD, Nucl. Phys. B 493 (1997) 397 [hep-ph/9609405] [INSPIRE].
  36. [36]
    C. Corianò and A.R. White, The Spectrum of the O(g 4) scale invariant Lipatov kernel, Phys. Rev. Lett. 74 (1995) 4980 [hep-ph/9411379] [INSPIRE].
  37. [37]
    C. Corianò and A. White, t channel unitarity construction of small x kernels, Acta Phys. Polon. B 26 (1995) 2005 [hep-ph/9511229] [INSPIRE].
  38. [38]
    A. Bzowski and K. Skenderis, Comments on scale and conformal invariance, JHEP 08 (2014) 027 [arXiv:1402.3208] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    N. Kidonakis, G. Oderda and G.F. Sterman, Evolution of color exchange in QCD hard scattering, Nucl. Phys. B 531 (1998) 365 [hep-ph/9803241] [INSPIRE].
  40. [40]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].
  41. [41]
    S.M. Aybat, L.J. Dixon and G.F. Sterman, The Two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Fisica “Ennio De Giorgi”Università del Salento and INFN LecceLecceItaly

Personalised recommendations