# Action growth of dyonic black holes and electromagnetic duality

- 26 Downloads

## Abstract

Electromagnetic duality of Maxwell theory is a symmetry of equations but not of the action. The usual application of the “complexity = action” conjecture would thus lose this duality. It was recently proposed in arXivid:1901.00014 that the duality can be restored by adding some appropriate boundary term, at the price of introducing the mixed boundary condition in the variation principle. We present universal such a term in both first-order and second-order formalism for a general theory of a minimally-coupled Maxwell field. The first-order formalism has the advantage that the variation principle involves only the Dirichlet boundary condition. Including this term, we compute the on-shell actions in the Wheeler-De Witt patch and find that the duality is preserved in these actions for a variety of theories, including Einstein-Maxwell, Einstein-Maxwell-Dilaton, Einstein-Born-Infeld and Einstein-Horndeski-Maxwell theories.

## Keywords

Black Holes AdS-CFT Correspondence Gauge-gravity correspondence Classical Theories of Gravity## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]J.M. Maldacena,
*The Large-N limit of superconformal field theories and supergravity*,*Int. J. Theor. Phys.***38**(1999) 1113 [*Adv. Theor. Math. Phys.***2**(1998) 231] [hep-th/9711200] [INSPIRE]. - [2]S.S. Gubser, I.R. Klebanov and A.M. Polyakov,
*Gauge theory correlators from noncritical string theory*,*Phys. Lett.***B 428**(1998) 105 [hep-th/9802109] [INSPIRE]. - [3]E. Witten,
*Anti-de Sitter space and holography*,*Adv. Theor. Math. Phys.***2**(1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [4]O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz,
*Large N field theories, string theory and gravity*,*Phys. Rept.***323**(2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [5]S.A. Hartnoll,
*Lectures on holographic methods for condensed matter physics*,*Class. Quant. Grav.***26**(2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [6]S. Sachdev,
*What can gauge-gravity duality teach us about condensed matter physics?*,*Ann. Rev. Condensed Matter Phys.***3**(2012) 9 [arXiv:1108.1197] [INSPIRE].CrossRefGoogle Scholar - [7]J. McGreevy,
*TASI 2015 Lectures on Quantum Matter (with a View Toward Holographic Duality)*, in proceedings of the*Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015)*, Boulder, CO, U.S.A., 1-26 June 2015, pp. 215-296 [ https://doi.org/10.1142/9789813149441_0004] [arXiv:1606.08953] [INSPIRE]. - [8]J. Zaanen, Y.W. Sun, Y. Liu and K. Schalm,
*Holographic duality in condensed matter physics*, Cambridge University Press, Cambridge U.K. (2015) [INSPIRE]. - [9]L. Susskind,
*Computational Complexity and Black Hole Horizons*,*Fortsch. Phys.***64**(2016) 24 [*Addendum ibid.***64**(2016) 44] [arXiv:1402.5674] [INSPIRE]. - [10]D. Stanford and L. Susskind,
*Complexity and Shock Wave Geometries*,*Phys. Rev.***D 90**(2014) 126007 [arXiv:1406.2678] [INSPIRE]. - [11]A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao,
*Holographic Complexity Equals Bulk Action?*,*Phys. Rev. Lett.***116**(2016) 191301 [arXiv:1509.07876] [INSPIRE].ADSCrossRefGoogle Scholar - [12]A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao,
*Complexity, action and black holes*,*Phys. Rev.***D 93**(2016) 086006 [arXiv:1512.04993] [INSPIRE]. - [13]L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin,
*Gravitational action with null boundaries*,*Phys. Rev.***D 94**(2016) 084046 [arXiv:1609.00207] [INSPIRE]. - [14]D. Carmi, R.C. Myers and P. Rath,
*Comments on Holographic Complexity*,*JHEP***03**(2017) 118 [arXiv:1612.00433] [INSPIRE]. - [15]A. Reynolds and S.F. Ross,
*Divergences in Holographic Complexity*,*Class. Quant. Grav.***34**(2017) 105004 [arXiv:1612.05439] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [16]
- [17]S.-J. Zhang,
*Complexity and phase transitions in a holographic QCD model*,*Nucl. Phys.***B 929**(2018) 243 [arXiv:1712.07583] [INSPIRE]. - [18]J. Jiang and H.-B. Zhang,
*Surface term, corner term and action growth in F*(*R*_{abcd})*gravity theory*,*Phys. Rev.***D 99**(2019) 086005 [arXiv:1806.10312] [INSPIRE]. - [19]Z.-Y. Fan and M. Guo,
*Holographic complexity under a global quantum quench*, arXiv:1811.01473 [INSPIRE]. - [20]J. Jiang,
*Action growth rate for a higher curvature gravitational theory*,*Phys. Rev.***D 98**(2018) 086018 [arXiv:1810.00758] [INSPIRE]. - [21]S.A. Hosseini Mansoori, V. Jahnke, M.M. Qaemmaqami and Y.D. Olivas,
*Holographic complexity of anisotropic black branes*, arXiv:1808.00067 [INSPIRE]. - [22]H. Ghaffarnejad, M. Farsam and E. Yaraie,
*Effects of quintessence dark energy on the action growth and butterfly velocity*, arXiv:1806.05735 [INSPIRE]. - [23]E. Yaraie, H. Ghaffarnejad and M. Farsam,
*Complexity growth and shock wave geometry in AdS-Maxwell-power-Yang-Mills theory*,*Eur. Phys. J.***C 78**(2018) 967 [arXiv:1806.07242] [INSPIRE]. - [24]Y.-S. An and R.-H. Peng,
*Effect of the dilaton on holographic complexity growth*,*Phys. Rev.***D 97**(2018) 066022 [arXiv:1801.03638] [INSPIRE]. - [25]J. Jiang,
*Holographic complexity in charged Vaidya black hole*,*Eur. Phys. J.***C 79**(2019) 130 [arXiv:1811.07347] [INSPIRE]. - [26]
- [27]R.-G. Cai, S.-M. Ruan, S.-J. Wang, R.-Q. Yang and R.-H. Peng,
*Action growth for AdS black holes*,*JHEP***09**(2016) 161 [arXiv:1606.08307] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [28]H. Huang, X.-H. Feng and H. Lü,
*Holographic Complexity and Two Identities of Action Growth*,*Phys. Lett.***B 769**(2017) 357 [arXiv:1611.02321] [INSPIRE]. - [29]W.-J. Pan and Y.-C. Huang,
*Holographic complexity and action growth in massive gravities*,*Phys. Rev.***D 95**(2017) 126013 [arXiv:1612.03627] [INSPIRE]. - [30]M. Alishahiha, A. Faraji Astaneh, A. Naseh and M.H. Vahidinia,
*On complexity for F*(*R*)*and critical gravity*,*JHEP***05**(2017) 009 [arXiv:1702.06796] [INSPIRE]. - [31]P. Wang, H. Yang and S. Ying,
*Action growth in f*(*R*)*gravity*,*Phys. Rev.***D 96**(2017) 046007 [arXiv:1703.10006] [INSPIRE]. - [32]W.-D. Guo, S.-W. Wei, Y.-Y. Li and Y.-X. Liu,
*Complexity growth rates for AdS black holes in massive gravity and f*(*R*)*gravity*,*Eur. Phys. J.***C 77**(2017) 904 [arXiv:1703.10468] [INSPIRE]. - [33]P.A. Cano, R.A. Hennigar and H. Marrochio,
*Complexity Growth Rate in Lovelock Gravity*,*Phys. Rev. Lett.***121**(2018) 121602 [arXiv:1803.02795] [INSPIRE]. - [34]R.-G. Cai, M. Sasaki and S.-J. Wang,
*Action growth of charged black holes with a single horizon*,*Phys. Rev.***D 95**(2017) 124002 [arXiv:1702.06766] [INSPIRE]. - [35]R.-Q. Yang, C. Niu, C.-Y. Zhang and K.-Y. Kim,
*Comparison of holographic and field theoretic complexities for time dependent thermofield double states*,*JHEP***02**(2018) 082 [arXiv:1710.00600] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [36]X.-H. Feng and H.-S. Liu,
*Holographic Complexity Growth Rate in Horndeski Theory*,*Eur. Phys. J.***C 79**(2019) 40 [arXiv:1811.03303] [INSPIRE]. - [37]J. Couch, W. Fischler and P.H. Nguyen,
*Noether charge, black hole volume and complexity*,*JHEP***03**(2017) 119 [arXiv:1610.02038] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [38]Z.-Y. Fan and M. Guo,
*On the Noether charge and the gravity duals of quantum complexity*,*JHEP***08**(2018) 031 [arXiv:1805.03796] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [39]
- [40]D. Momeni, M. Faizal, S. Bahamonde and R. Myrzakulov,
*Holographic complexity for time-dependent backgrounds*,*Phys. Lett.***B 762**(2016) 276 [arXiv:1610.01542] [INSPIRE]. - [41]
- [42]Z.-Y. Fan and M. Guo,
*Holographic complexity and thermodynamics of AdS black holes*,*Phys. Rev.***D 100**(2019) 026016 [arXiv:1903.04127] [INSPIRE]. - [43]A.R. Brown, H. Gharibyan, H.W. Lin, L. Susskind, L. Thorlacius and Y. Zhao,
*Complexity of Jackiw-Teitelboim gravity*,*Phys. Rev.***D 99**(2019) 046016 [arXiv:1810.08741] [INSPIRE]. - [44]K. Goto, H. Marrochio, R.C. Myers, L. Queimada and B. Yoshida,
*Holographic Complexity Equals Which Action?*,*JHEP***02**(2019) 160 [arXiv:1901.00014] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [45]S. Deser and C. Teitelboim,
*Duality Transformations of Abelian and Nonabelian Gauge Fields*,*Phys. Rev.***D 13**(1976) 1592 [INSPIRE]. - [46]
- [47]S. Deser, M. Henneaux and C. Teitelboim,
*Electric-magnetic black hole duality*,*Phys. Rev.***D 55**(1997) 826 [hep-th/9607182] [INSPIRE]. - [48]E. Cremmer, B. Julia, H. Lü and C.N. Pope,
*Dualization of dualities. 2. Twisted self-duality of doubled fields and superdualities*,*Nucl. Phys.***B 535**(1998) 242 [hep-th/9806106] [INSPIRE]. - [49]G.W. Gibbons and S.W. Hawking,
*Action Integrals and Partition Functions in Quantum Gravity*,*Phys. Rev.***D 15**(1977) 2752 [INSPIRE]. - [50]H.W. Braden, J.D. Brown, B.F. Whiting and J.W. York Jr.,
*Charged black hole in a grand canonical ensemble*,*Phys. Rev.***D 42**(1990) 3376 [INSPIRE]. - [51]S.W. Hawking and S.F. Ross,
*Duality between electric and magnetic black holes*,*Phys. Rev.***D 52**(1995) 5865 [hep-th/9504019] [INSPIRE]. - [52]H. Lü, Y. Pang and C.N. Pope,
*AdS Dyonic Black Hole and its Thermodynamics*,*JHEP***11**(2013) 033 [arXiv:1307.6243] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [53]C.J. Gao and S.N. Zhang,
*Dilaton black holes in de Sitter or Anti-de Sitter universe*,*Phys. Rev.***D 70**(2004) 124019 [hep-th/0411104] [INSPIRE]. - [54]H. Lü,
*Charged dilatonic AdS black holes and magnetic AdS*_{D−2}×*R*^{2}*vacua*,*JHEP***09**(2013) 112 [arXiv:1306.2386] [INSPIRE]. - [55]M. Born and L. Infeld,
*Foundations of the new field theory*,*Proc. Roy. Soc. Lond.***A 144**(1934) 425 [INSPIRE]. - [56]A. García D, H. Salazar I and J.F. Plebanski,
*Type-D solutions of the Einstein and Born-Infeld nonlinear electrodynamics equations*,*Nuovo Cim.***B 84**(1984) 65.Google Scholar - [57]S. Li, H. Lü and H. Wei,
*Dyonic (A)dS Black Holes in Einstein-Born-Infeld Theory in Diverse Dimensions*,*JHEP***07**(2016) 004 [arXiv:1606.02733] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [58]G.W. Horndeski,
*Second-order scalar-tensor field equations in a four-dimensional space*,*Int. J. Theor. Phys.***10**(1974) 363 [INSPIRE].MathSciNetCrossRefGoogle Scholar - [59]D. Lovelock,
*The Einstein tensor and its generalizations*,*J. Math. Phys.***12**(1971) 498 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [60]A. Anabalon, A. Cisterna and J. Oliva,
*Asymptotically locally AdS and flat black holes in Horndeski theory*,*Phys. Rev.***D 89**(2014) 084050 [arXiv:1312.3597] [INSPIRE]. - [61]A. Cisterna and C. Erices,
*Asymptotically locally AdS and flat black holes in the presence of an electric field in the Horndeski scenario*,*Phys. Rev.***D 89**(2014) 084038 [arXiv:1401.4479] [INSPIRE]. - [62]X.-H. Feng, H.-S. Liu, H. Lü and C.N. Pope,
*Black Hole Entropy and Viscosity Bound in Horndeski Gravity*,*JHEP***11**(2015) 176 [arXiv:1509.07142] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [63]X.-H. Feng, H.-S. Liu, H. Lü and C.N. Pope,
*Thermodynamics of Charged Black Holes in Einstein-Horndeski-Maxwell Theory*,*Phys. Rev.***D 93**(2016) 044030 [arXiv:1512.02659] [INSPIRE]. - [64]J. Beltran Jimenez, R. Durrer, L. Heisenberg and M. Thorsrud,
*Stability of Horndeski vector-tensor interactions*,*JCAP***10**(2013) 064 [arXiv:1308.1867] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [65]T. Kobayashi, H. Motohashi and T. Suyama,
*Black hole perturbation in the most general scalar-tensor theory with second-order field equations II: the even-parity sector*,*Phys. Rev.***D 89**(2014) 084042 [arXiv:1402.6740] [INSPIRE]. - [66]M. Minamitsuji,
*Causal structure in the scalar-tensor theory with field derivative coupling to the Einstein tensor*,*Phys. Lett.***B 743**(2015) 272 [INSPIRE]. - [67]X.-M. Kuang and E. Papantonopoulos,
*Building a Holographic Superconductor with a Scalar Field Coupled Kinematically to Einstein Tensor*,*JHEP***08**(2016) 161 [arXiv:1607.04928] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [68]W.-J. Jiang, H.-S. Liu, H. Lü and C.N. Pope,
*DC Conductivities with Momentum Dissipation in Horndeski Theories*,*JHEP***07**(2017) 084 [arXiv:1703.00922] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [69]M. Baggioli and W.-J. Li,
*Diffusivities bounds and chaos in holographic Horndeski theories*,*JHEP***07**(2017) 055 [arXiv:1705.01766] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [70]H.-S. Liu, H. Lü and C.N. Pope,
*Holographic Heat Current as Noether Current*,*JHEP***09**(2017) 146 [arXiv:1708.02329] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [71]X.-H. Feng, H.-S. Liu, W.-T. Lu and H. Lü,
*Horndeski Gravity and the Violation of Reverse Isoperimetric Inequality*,*Eur. Phys. J.***C 77**(2017) 790 [arXiv:1705.08970] [INSPIRE]. - [72]E. Caceres, R. Mohan and P.H. Nguyen,
*On holographic entanglement entropy of Horndeski black holes*,*JHEP***10**(2017) 145 [arXiv:1707.06322] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [73]W.-J. Geng, S.-L. Li, H. Lü and H. Wei,
*Gödel metrics with chronology protection in Horndeski gravities*,*Phys. Lett.***B 780**(2018) 196 [arXiv:1801.00009] [INSPIRE]. - [74]Y.-Z. Li and H. Lü,
*a-theorem for Horndeski gravity at the critical point*,*Phys. Rev.***D 97**(2018) 126008 [arXiv:1803.08088] [INSPIRE]. - [75]H.-S. Liu,
*Violation of Thermal Conductivity Bound in Horndeski Theory*,*Phys. Rev.***D 98**(2018) 061902 [arXiv:1804.06502] [INSPIRE]. - [76]Y.-Z. Li, H. Lü and H.-Y. Zhang,
*Scale Invariance vs. Conformal Invariance: Holographic Two-Point Functions in Horndeski Gravity*,*Eur. Phys. J.***C 79**(2019) 592 [arXiv:1812.05123] [INSPIRE].