Advertisement

Journal of High Energy Physics

, 2019:101 | Cite as

Violation of the Kluberg-Stern-Zuber theorem in SCET

  • Martin Beneke
  • Mathias Garny
  • Robert Szafron
  • Jian WangEmail author
Open Access
Regular Article - Theoretical Physics
  • 13 Downloads

Abstract

A classic result, originally due to Kluberg-Stern and Zuber, states that operators that vanish by the classical equation of motion (eom) do not mix into “physical” operators. Here we show that and explain why this result does not hold in soft-collinear effective theory (SCET) for the renormalization of power-suppressed operators. We calculate the non-vanishing mixing of eom operators for the simplest case of N -jet operators with a single collinear field in every direction. The result implies that — for the computation of the anomalous dimension but not for on-shell matrix elements — there exists a preferred set of fields that must be used to reproduce the infrared singularities of QCD scattering amplitudes. We identify these fields and explain their relation to the gauge-invariant SCET Lagrangian. Further checks reveal another generic property of SCET beyond leading power, which will be relevant to resummation at the next-to-leading logarithmic level, the divergence of convolution integrals with the hard matching coefficients. We propose an operator solution that allows to consistently renormalize such divergences.

Keywords

Effective Field Theories Perturbative QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    W.S. Deans and J.A. Dixon, Theory of gauge invariant operators: their renormalization and S matrix elements, Phys. Rev. D 18 (1978) 1113 [INSPIRE].
  2. [2]
    H.D. Politzer, Power corrections at short distances, Nucl. Phys. B 172 (1980) 349 [INSPIRE].
  3. [3]
    H. Kluberg-Stern and J.B. Zuber, Renormalization of nonabelian gauge theories in a background field gauge. 2. Gauge invariant operators, Phys. Rev. D 12 (1975) 3159 [INSPIRE].
  4. [4]
    S.D. Joglekar and B.W. Lee, General theory of renormalization of gauge invariant operators, Annals Phys. 97 (1976) 160 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Espriu, Renormalization of gauge invariant operators and the axial anomaly, Phys. Rev. D 28 (1983) 349 [INSPIRE].
  6. [6]
    J.C. Collins and R.J. Scalise, The renormalization of composite operators in Yang-Mills theories using general covariant gauge, Phys. Rev. D 50 (1994) 4117 [hep-ph/9403231] [INSPIRE].
  7. [7]
    A.V. Manohar, Introduction to effective field theories, talk given at the Les Houches summer school: EFT in Particle Physics and Cosmology, July 3–28, Les Houches, Chamonix Valley, France (2018), arXiv:1804.05863 [INSPIRE].
  8. [8]
    J.C. Criado and M. Pérez-Victoria, Field redefinitions in effective theories at higher orders, JHEP 03 (2019) 038 [arXiv:1811.09413] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    P. Gambino, M. Gorbahn and U. Haisch, Anomalous dimension matrix for radiative and rare semileptonic B decays up to three loops, Nucl. Phys. B 673 (2003) 238 [hep-ph/0306079] [INSPIRE].
  10. [10]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  11. [11]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  12. [12]
    M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
  13. [13]
    M. Beneke and T. Feldmann, Multipole expanded soft collinear effective theory with non-Abelian gauge symmetry, Phys. Lett. B 553 (2003) 267 [hep-ph/0211358] [INSPIRE].
  14. [14]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Beneke, F. Campanario, T. Mannel and B.D. Pecjak, Power corrections to \( \overline{B} \)X u l \( \overline{\nu} \) (X s γ) decay spectra in theshape-functionregion, JHEP 06 (2005) 071 [hep-ph/0411395] [INSPIRE].
  16. [16]
    A.J. Larkoski, D. Neill and I.W. Stewart, Soft theorems from effective field theory, JHEP 06 (2015) 077 [arXiv:1412.3108] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S.M. Freedman and R. Goerke, Renormalization of subleading dijet operators in soft-collinear effective theory, Phys. Rev. D 90 (2014) 114010 [arXiv:1408.6240] [INSPIRE].
  18. [18]
    D.W. Kolodrubetz, I. Moult and I.W. Stewart, Building blocks for subleading helicity operators, JHEP 05 (2016) 139 [arXiv:1601.02607] [INSPIRE].
  19. [19]
    I. Feige, D.W. Kolodrubetz, I. Moult and I.W. Stewart, A complete basis of helicity operators for subleading factorization, JHEP 11 (2017) 142 [arXiv:1703.03411] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    I. Moult, I.W. Stewart and G. Vita, A subleading operator basis and matching for ggH, JHEP 07 (2017) 067 [arXiv:1703.03408] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Beneke, M. Garny, R. Szafron and J. Wang, Subleading-power N -jet operators and the LBK amplitude in SCET, PoS(RADCOR2017) 048 [arXiv:1712.07462] [INSPIRE].
  22. [22]
    M. Beneke, M. Garny, R. Szafron and J. Wang, Anomalous dimension of subleading-power N-jet operators, JHEP 03 (2018) 001 [arXiv:1712.04416] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Beneke, M. Garny, R. Szafron and J. Wang, Anomalous dimension of subleading-power N -jet operators. Part II, JHEP 11 (2018) 112 [arXiv:1808.04742] [INSPIRE].
  24. [24]
    I. Moult, I.W. Stewart, G. Vita and H.X. Zhu, First subleading power resummation for event shapes, JHEP 08 (2018) 013 [arXiv:1804.04665] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M. Beneke et al., Leading-logarithmic threshold resummation of the Drell-Yan process at next-to-leading power, JHEP 03 (2019) 043 [arXiv:1809.10631] [INSPIRE].
  26. [26]
    M.A. Ebert et al., Subleading power rapidity divergences and power corrections for q T, JHEP 04 (2019) 123 [arXiv:1812.08189] [INSPIRE].
  27. [27]
    M. Beneke, Y. Kiyo and D.s. Yang, Loop corrections to subleading heavy quark currents in SCET, Nucl. Phys. B 692 (2004) 232 [hep-ph/0402241] [INSPIRE].
  28. [28]
    R.J. Hill, T. Becher, S.J. Lee and M. Neubert, Sudakov resummation for subleading SCET currents and heavy-to-light form-factors, JHEP 07 (2004) 081 [hep-ph/0404217] [INSPIRE].
  29. [29]
    M. Beneke and D. Yang, Heavy-to-light B meson form-factors at large recoil energy: Spectator-scattering corrections, Nucl. Phys. B 736 (2006) 34 [hep-ph/0508250] [INSPIRE].
  30. [30]
    M. Beneke, C. Bobeth and R. Szafron, Enhanced electromagnetic correction to the rare B-meson decay B s,d → μ + μ , Phys. Rev. Lett. 120 (2018) 011801 [arXiv:1708.09152] [INSPIRE].
  31. [31]
    S. Alte, M. König and M. Neubert, Effective field theory after a new-physics discovery, JHEP 08 (2018) 095 [arXiv:1806.01278] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Beneke, M. Garny, R. Szafron and J. Wang, in preparation.Google Scholar
  33. [33]
    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
  34. [34]
    A.V. Manohar, T. Mehen, D. Pirjol and I.W. Stewart, Reparameterization invariance for collinear operators, Phys. Lett. B 539 (2002) 59 [hep-ph/0204229] [INSPIRE].
  35. [35]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
  36. [36]
    M. Beneke and T. Feldmann, Factorization of heavy to light form-factors in soft collinear effective theory, Nucl. Phys. B 685 (2004) 249 [hep-ph/0311335] [INSPIRE].
  37. [37]
    A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].
  38. [38]
    M. Beneke, Perturbative heavy quark-anti-quark systems, hep-ph/9911490 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Martin Beneke
    • 1
  • Mathias Garny
    • 1
  • Robert Szafron
    • 1
  • Jian Wang
    • 1
    • 2
    Email author
  1. 1.Physik Department T31Technische Universität MünchenGarchingGermany
  2. 2.School of PhysicsShandong UniversityJinanChina

Personalised recommendations