# Stringy effects and the role of the singularity in holographic complexity

## Abstract

There has been considerable recent interest in holographic complexity. The two leading conjectures on this subject hold that the quantum complexity of the boundary thermofield double state should be dual to either the volume of the Einstein-Rosen bridge connecting the two sides (CV conjecture) or to the action of the Wheeler-de-Witt patch of the bulk spacetime (CA conjecture). Although these conjectures are frequently studied in the context of pure Einstein gravity, from the perspective of string theory it is also natural to consider models of gravity in which general relativity is perturbed by higher powers of the Riemann tensor, suppressed by powers of the string length; in a holographic context, these corrections are dual to corrections in inverse powers of the ’t Hooft coupling. In this paper, we investigate the CV and CA conjectures in two stringy models of higher-curvature gravity. We find that the CV complexification rate remains well-behaved, but conversely that these corrections induce new divergences in the CA complexification rate that are absent in pure Einstein gravity. These divergences are intrinsically linked to the singularity, and appear to be generic in higher curvature theories. To the best of our knowledge, infinities originating at the singularity have not yet been observed elsewhere in the literature. We argue that these divergences imply that, in the CA picture, the complexification rate of the boundary theory is a nonanalytic function of the ’t Hooft coupling.

## Keywords

AdS-CFT Correspondence Spacetime Singularities## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]L. Susskind,
*Computational Complexity and Black Hole Horizons*,*Fortsch. Phys.***64**(2016) 44 [arXiv:1403.5695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [2]M.A. Nielsen and I.L. Chuang,
*Quantum Computation and Quantum Information: 10th Anniversary Edition*, 10th edition, Cambridge University Press, New York, NY, U.S.A., (2011).Google Scholar - [3]S. Aaronson,
*The Complexity of Quantum States and Transformations: From Quantum Money to Black Holes*, 2016, arXiv:1607.05256 [INSPIRE]. - [4]A.R. Brown and L. Susskind,
*Second law of quantum complexity*,*Phys. Rev.***D 97**(2018) 086015 [arXiv:1701.01107] [INSPIRE]. - [5]
- [6]M.A. Nielsen,
*A geometric approach to quantum circuit lower bounds*, quant-ph/0502070. - [7]M.R. Dowling and M.A. Nielsen,
*The geometry of quantum computation*, quant-ph/0701004. - [8]
- [9]A.R. Brown, L. Susskind and Y. Zhao,
*Quantum Complexity and Negative Curvature*,*Phys. Rev.***D 95**(2017) 045010 [arXiv:1608.02612] [INSPIRE]. - [10]
- [11]W. Cottrell and M. Montero,
*Complexity is simple!*,*JHEP***02**(2018) 039 [arXiv:1710.01175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [12]D. Carmi, S. Chapman, H. Marrochio, R.C. Myers and S. Sugishita,
*On the Time Dependence of Holographic Complexity*,*JHEP***11**(2017) 188 [arXiv:1709.10184] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [13]R.-Q. Yang, C. Niu, C.-Y. Zhang and K.-Y. Kim,
*Comparison of holographic and field theoretic complexities for time dependent thermofield double states*,*JHEP***02**(2018) 082 [arXiv:1710.00600] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [14]J.M. Maldacena,
*The large N limit of superconformal field theories and supergravity*,*Int. J. Theor. Phys.***38**(1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [15]E. Witten,
*Anti-de Sitter space and holography*,*Adv. Theor. Math. Phys.***2**(1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [16]S.S. Gubser, I.R. Klebanov and A.M. Polyakov,
*Gauge theory correlators from noncritical string theory*,*Phys. Lett.***B 428**(1998) 105 [hep-th/9802109] [INSPIRE]. - [17]J.M. Maldacena,
*Eternal black holes in anti-de Sitter*,*JHEP***04**(2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [18]D. Stanford and L. Susskind,
*Complexity and Shock Wave Geometries*,*Phys. Rev.***D 90**(2014) 126007 [arXiv:1406.2678] [INSPIRE]. - [19]L. Susskind,
*Entanglement is not enough*,*Fortsch. Phys.***64**(2016) 49 [arXiv:1411.0690] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [20]A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao,
*Holographic Complexity Equals Bulk Action?*,*Phys. Rev. Lett.***116**(2016) 191301 [arXiv:1509.07876] [INSPIRE].ADSCrossRefGoogle Scholar - [21]A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao,
*Complexity, action and black holes*,*Phys. Rev.***D 93**(2016) 086006 [arXiv:1512.04993] [INSPIRE]. - [22]T. Hartman and J. Maldacena,
*Time Evolution of Entanglement Entropy from Black Hole Interiors*,*JHEP***05**(2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [23]L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin,
*Gravitational action with null boundaries*,*Phys. Rev.***D 94**(2016) 084046 [arXiv:1609.00207] [INSPIRE]. - [24]D. Carmi, R.C. Myers and P. Rath,
*Comments on Holographic Complexity*,*JHEP***03**(2017) 118 [arXiv:1612.00433] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [25]A. Akhavan, M. Alishahiha, A. Naseh and H. Zolfi,
*Complexity and Behind the Horizon Cut Off*,*JHEP***12**(2018) 090 [arXiv:1810.12015] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [26]M. Alishahiha, K. Babaei Velni and M.R. Tanhayi,
*Complexity and Near Extremal Charged Black Branes*, arXiv:1901.00689 [INSPIRE]. - [27]S.S. Hashemi, G. Jafari, A. Naseh and H. Zolfi,
*More on Complexity in Finite Cut Off Geometry*,*Phys. Lett.***B 797**(2019) 134898 [arXiv:1902.03554] [INSPIRE]. - [28]A.R. Brown, H. Gharibyan, H.W. Lin, L. Susskind, L. Thorlacius and Y. Zhao,
*Complexity of Jackiw-Teitelboim gravity*,*Phys. Rev.***D 99**(2019) 046016 [arXiv:1810.08741] [INSPIRE]. - [29]K. Goto, H. Marrochio, R.C. Myers, L. Queimada and B. Yoshida,
*Holographic Complexity Equals Which Action?*,*JHEP***02**(2019) 160 [arXiv:1901.00014] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [30]M. Alishahiha,
*On complexity of Jackiw-Teitelboim gravity*,*Eur. Phys. J.***C 79**(2019) 365 [arXiv:1811.09028] [INSPIRE]. - [31]B. Zwiebach,
*Curvature Squared Terms and String Theories*,*Phys. Lett.***156B**(1985) 315 [INSPIRE].ADSCrossRefGoogle Scholar - [32]B. Zumino,
*Gravity Theories in More Than Four-Dimensions*,*Phys. Rept.***137**(1986) 109 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [33]D.J. Gross and E. Witten,
*Superstring Modifications of Einstein*’*s Equations*,*Nucl. Phys.***B 277**(1986) 1 [INSPIRE]. - [34]
- [35]A. Sen,
*Black Hole Entropy Function, Attractors and Precision Counting of Microstates*,*Gen. Rel. Grav.***40**(2008) 2249 [arXiv:0708.1270] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [36]A. Dabholkar and S. Nampuri,
*Quantum black holes*,*Lect. Notes Phys.***851**(2012) 165 [arXiv:1208.4814].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [37]S.H. Shenker and D. Stanford,
*Black holes and the butterfly effect*,*JHEP***03**(2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [38]S.H. Shenker and D. Stanford,
*Stringy effects in scrambling*,*JHEP***05**(2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [39]J. Maldacena, S.H. Shenker and D. Stanford,
*A bound on chaos*,*JHEP***08**(2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [40]
- [41]D.A. Roberts, D. Stanford and A. Streicher,
*Operator growth in the SYK model*,*JHEP***06**(2018) 122 [arXiv:1802.02633] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [42]A.R. Brown, H. Gharibyan, A. Streicher, L. Susskind, L. Thorlacius and Y. Zhao,
*Falling Toward Charged Black Holes*,*Phys. Rev.***D 98**(2018) 126016 [arXiv:1804.04156] [INSPIRE]. - [43]X.-L. Qi and A. Streicher,
*Quantum Epidemiology: Operator Growth, Thermal Effects and SYK*,*JHEP***08**(2019) 012 [arXiv:1810.11958] [INSPIRE].ADSCrossRefGoogle Scholar - [44]D.E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi and E. Altman,
*A Universal Operator Growth Hypothesis*, arXiv:1812.08657 [INSPIRE]. - [45]P. Wang, H. Yang and S. Ying,
*Action growth in f*(*R*)*gravity*,*Phys. Rev.***D 96**(2017) 046007 [arXiv:1703.10006] [INSPIRE]. - [46]W.-D. Guo, S.-W. Wei, Y.-Y. Li and Y.-X. Liu,
*Complexity growth rates for AdS black holes in massive gravity and f*(*R*)*gravity*,*Eur. Phys. J.***C 77**(2017) 904 [arXiv:1703.10468] [INSPIRE]. - [47]M. Alishahiha, A. Faraji Astaneh, A. Naseh and M.H. Vahidinia,
*On complexity for F(R) and critical gravity*,*JHEP***05**(2017) 009 [arXiv:1702.06796] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [48]P.A. Cano, R.A. Hennigar and H. Marrochio,
*Complexity Growth Rate in Lovelock Gravity*,*Phys. Rev. Lett.***121**(2018) 121602 [arXiv:1803.02795] [INSPIRE].ADSCrossRefGoogle Scholar - [49]R.-G. Cai, S.-M. Ruan, S.-J. Wang, R.-Q. Yang and R.-H. Peng,
*Action growth for AdS black holes*,*JHEP***09**(2016) 161 [arXiv:1606.08307] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [50]Y.-S. An, R.-G. Cai and Y. Peng,
*Time Dependence of Holographic Complexity in Gauss-Bonnet Gravity*,*Phys. Rev.***D 98**(2018) 106013 [arXiv:1805.07775] [INSPIRE]. - [51]P.A. Cano,
*Lovelock action with nonsmooth boundaries*,*Phys. Rev.***D 97**(2018) 104048 [arXiv:1803.00172] [INSPIRE]. - [52]J. Jiang and H. Zhang,
*Surface term, corner term and action growth in F*(*R*_{abcd})*gravity theory*,*Phys. Rev.***D 99**(2019) 086005 [arXiv:1806.10312] [INSPIRE]. - [53]J. Jiang,
*Action growth rate for a higher curvature gravitational theory*,*Phys. Rev.***D 98**(2018) 086018 [arXiv:1810.00758] [INSPIRE]. - [54]H. Huang, X.-H. Feng and H. Lü,
*Holographic Complexity and Two Identities of Action Growth*,*Phys. Lett.***B 769**(2017) 357 [arXiv:1611.02321] [INSPIRE]. - [55]Y.-C. Ding and T. Wang,
*Action growth rates of black holes in the Chern-Simons modified gravity*, arXiv:1811.08113 [INSPIRE]. - [56]
- [57]P. Bueno, P.A. Cano and A. Ruipérez,
*Holographic studies of Einsteinian cubic gravity*,*JHEP***03**(2018) 150 [arXiv:1802.00018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [58]S. Chapman, H. Marrochio and R.C. Myers,
*Complexity of Formation in Holography*,*JHEP***01**(2017) 062 [arXiv:1610.08063] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [59]S. Chapman, H. Marrochio and R.C. Myers,
*Holographic complexity in Vaidya spacetimes. Part I*,*JHEP***06**(2018) 046 [arXiv:1804.07410] [INSPIRE]. - [60]S. Chapman, H. Marrochio and R.C. Myers,
*Holographic complexity in Vaidya spacetimes. Part II*,*JHEP***06**(2018) 114 [arXiv:1805.07262] [INSPIRE]. - [61]R.-G. Cai, M. Sasaki and S.-J. Wang,
*Action growth of charged black holes with a single horizon*,*Phys. Rev.***D 95**(2017) 124002 [arXiv:1702.06766] [INSPIRE]. - [62]L. Sebastiani, L. Vanzo and S. Zerbini,
*Action growth for black holes in modified gravity*,*Phys. Rev.***D 97**(2018) 044009 [arXiv:1710.05686] [INSPIRE]. - [63]S.A. Hosseini Mansoori, V. Jahnke, M.M. Qaemmaqami and Y.D. Olivas,
*Holographic complexity of anisotropic black branes*,*Phys. Rev.***D 100**(2019) 046014 [arXiv:1808.00067] [INSPIRE]. - [64]A. Sen,
*Entropy function for heterotic black holes*,*JHEP***03**(2006) 008 [hep-th/0508042] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [65]R.C. Myers,
*Higher Derivative Gravity, Surface Terms and String Theory*,*Phys. Rev.***D 36**(1987) 392 [INSPIRE]. - [66]R.C. Myers, M.F. Paulos and A. Sinha,
*Quantum corrections to η/s*,*Phys. Rev.***D 79**(2009) 041901 [arXiv:0806.2156] [INSPIRE]. - [67]A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha,
*Universal holographic hydrodynamics at finite coupling*,*Phys. Lett.***B 669**(2008) 364 [arXiv:0808.1837] [INSPIRE]. - [68]T. Banks and M.B. Green,
*Nonperturbative effects in AdS*_{5}×*S*^{5}*string theory and d*= 4*SUSY Yang-Mills*,*JHEP***05**(1998) 002 [hep-th/9804170] [INSPIRE]. - [69]S.S. Gubser, I.R. Klebanov and A.A. Tseytlin,
*Coupling constant dependence in the thermodynamics of N*= 4*supersymmetric Yang-Mills theory*,*Nucl. Phys.***B 534**(1998) 202 [hep-th/9805156] [INSPIRE]. - [70]J. Pawelczyk and S. Theisen,
*AdS*_{5}×*S*^{5}*black hole metric at*\( \mathcal{O} \)(*α*^{′3}),*JHEP***09**(1998) 010 [hep-th/9808126] [INSPIRE]. - [71]D.A. Galante and R.C. Myers,
*Holographic Renyi entropies at finite coupling*,*JHEP***08**(2013) 063 [arXiv:1305.7191] [INSPIRE].ADSCrossRefGoogle Scholar - [72]A. Buchel, J.T. Liu and A.O. Starinets,
*Coupling constant dependence of the shear viscosity in N*= 4*supersymmetric Yang-Mills theory*,*Nucl. Phys.***B 707**(2005) 56 [hep-th/0406264] [INSPIRE]. - [73]A. Buchel, R.C. Myers and A. Sinha,
*Beyond η/s*= 1*/*4*π*,*JHEP***03**(2009) 084 [arXiv:0812.2521] [INSPIRE]. - [74]S. Grozdanov,
*On the connection between hydrodynamics and quantum chaos in holographic theories with stringy corrections*,*JHEP***01**(2019) 048 [arXiv:1811.09641] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [75]S. Grozdanov, K. Schalm and V. Scopelliti,
*Black hole scrambling from hydrodynamics*,*Phys. Rev. Lett.***120**(2018) 231601 [arXiv:1710.00921] [INSPIRE].ADSCrossRefGoogle Scholar - [76]J.Z. Simon,
*Higher Derivative Lagrangians, Nonlocality, Problems and Solutions*,*Phys. Rev.***D 41**(1990) 3720 [INSPIRE]. - [77]E. Dyer and K. Hinterbichler,
*Boundary Terms, Variational Principles and Higher Derivative Modified Gravity*,*Phys. Rev.***D 79**(2009) 024028 [arXiv:0809.4033] [INSPIRE]. - [78]N. Deruelle, M. Sasaki, Y. Sendouda and D. Yamauchi,
*Hamiltonian formulation of f(Riemann) theories of gravity*,*Prog. Theor. Phys.***123**(2010) 169 [arXiv:0908.0679] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [79]A. Woszczyna, P. Plaszczyk, W. Czaja and Z.A. Golda,
*Symbolic Tensor Calculus*—*Functional and Dynamic Approach*, arXiv:1603.05819 [INSPIRE]. - [80]
*ccgrg*—*the symbolic tensor analysis package, with tools for general relativity*, http://library.wolfram.com/infocenter/MathSource/8848/. - [81]
*xtensor: Fast abstract tensor computer algebra*, http://xact.es/xTensor/. - [82]M. Moosa,
*Divergences in the rate of complexification*,*Phys. Rev.***D 97**(2018) 106016 [arXiv:1712.07137] [INSPIRE]. - [83]J.L.F. Barbon and E. Rabinovici,
*Holographic complexity and spacetime singularities*,*JHEP***01**(2016) 084 [arXiv:1509.09291] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [84]S. Bolognesi, E. Rabinovici and S.R. Roy,
*On Some Universal Features of the Holographic Quantum Complexity of Bulk Singularities*,*JHEP***06**(2018) 016 [arXiv:1802.02045] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [85]A. Reynolds and S.F. Ross,
*Divergences in Holographic Complexity*,*Class. Quant. Grav.***34**(2017) 105004 [arXiv:1612.05439] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [86]R.M. Wald,
*Black hole entropy is the Noether charge*,*Phys. Rev.***D 48**(1993) R3427 [gr-qc/9307038] [INSPIRE]. - [87]P. Bueno, V.S. Min, A.J. Speranza and M.R. Visser,
*Entanglement equilibrium for higher order gravity*,*Phys. Rev.***D 95**(2017) 046003 [arXiv:1612.04374] [INSPIRE]. - [88]A. Belin, A. Lewkowycz and G. Sárosi,
*The boundary dual of the bulk symplectic form*,*Phys. Lett.***B 789**(2019) 71 [arXiv:1806.10144] [INSPIRE]. - [89]A. Belin, A. Lewkowycz and G. Sárosi,
*Complexity and the bulk volume, a new York time story*,*JHEP***03**(2019) 044 [arXiv:1811.03097] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [90]D.G. Boulware and S. Deser,
*String Generated Gravity Models*,*Phys. Rev. Lett.***55**(1985) 2656 [INSPIRE].ADSCrossRefGoogle Scholar - [91]J.T. Liu and W.A. Sabra,
*Hamilton-Jacobi Counterterms for Einstein-Gauss-Bonnet Gravity*,*Class. Quant. Grav.***27**(2010) 175014 [arXiv:0807.1256] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [92]A. Buchel,
*Higher derivative corrections to near-extremal black holes in type IIB supergravity*,*Nucl. Phys.***B 750**(2006) 45 [hep-th/0604167] [INSPIRE]. - [93]S. de Haro, A. Sinkovics and K. Skenderis,
*On alpha-prime corrections to D-brane solutions*,*Phys. Rev.***D 68**(2003) 066001 [hep-th/0302136] [INSPIRE]. - [94]
- [95]T. Jacobson and R.C. Myers,
*Black hole entropy and higher curvature interactions*,*Phys. Rev. Lett.***70**(1993) 3684 [hep-th/9305016] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [96]S. Chatterjee and M. Parikh,
*The second law in four-dimensional Einstein-Gauss-Bonnet gravity*,*Class. Quant. Grav.***31**(2014) 155007 [arXiv:1312.1323] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [97]A.M. Charles and F. Larsen,
*Kerr-Newman Black Holes with String Corrections*,*JHEP***10**(2016) 142 [arXiv:1605.07622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [98]T. Liko,
*Topological deformation of isolated horizons*,*Phys. Rev.***D 77**(2008) 064004 [arXiv:0705.1518] [INSPIRE]. - [99]S. Sarkar and A.C. Wall,
*Second Law Violations in Lovelock Gravity for Black Hole Mergers*,*Phys. Rev.***D 83**(2011) 124048 [arXiv:1011.4988] [INSPIRE]. - [100]M. Flory and N. Miekley,
*Complexity change under conformal transformations in AdS*_{3}*/CFT*_{2},*JHEP***05**(2019) 003 [arXiv:1806.08376] [INSPIRE]. - [101]M. Flory,
*WdW-patches in AdS*_{3}*and complexity change under conformal transformations II*,*JHEP***05**(2019) 086 [arXiv:1902.06499] [INSPIRE]. - [102]S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski,
*Toward a Definition of Complexity for Quantum Field Theory States*,*Phys. Rev. Lett.***120**(2018) 121602 [arXiv:1707.08582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [103]R. Jefferson and R.C. Myers,
*Circuit complexity in quantum field theory*,*JHEP***10**(2017) 107 [arXiv:1707.08570] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [104]R. Khan, C. Krishnan and S. Sharma,
*Circuit Complexity in Fermionic Field Theory*,*Phys. Rev.***D 98**(2018) 126001 [arXiv:1801.07620] [INSPIRE]. - [105]L. Hackl and R.C. Myers,
*Circuit complexity for free fermions*,*JHEP***07**(2018) 139 [arXiv:1803.10638] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [106]S. Chapman et al.,
*Complexity and entanglement for thermofield double states*,*SciPost Phys.***6**(2019) 034 [arXiv:1810.05151] [INSPIRE].ADSCrossRefGoogle Scholar - [107]M. Guo, J. Hernandez, R.C. Myers and S.-M. Ruan,
*Circuit Complexity for Coherent States*,*JHEP***10**(2018) 011 [arXiv:1807.07677] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [108]R.-Q. Yang,
*Complexity for quantum field theory states and applications to thermofield double states*,*Phys. Rev.***D 97**(2018) 066004 [arXiv:1709.00921] [INSPIRE]. - [109]R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang and K.-Y. Kim,
*More on complexity of operators in quantum field theory*,*JHEP***03**(2019) 161 [arXiv:1809.06678] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [110]J. Jiang and X. Liu,
*Circuit Complexity for Fermionic Thermofield Double states*,*Phys. Rev.***D 99**(2019) 026011 [arXiv:1812.00193] [INSPIRE]. - [111]A. Bhattacharyya, P. Caputa, S.R. Das, N. Kundu, M. Miyaji and T. Takayanagi,
*Path-Integral Complexity for Perturbed CFTs*,*JHEP***07**(2018) 086 [arXiv:1804.01999] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [112]A. Bhattacharyya, A. Shekar and A. Sinha,
*Circuit complexity in interacting QFTs and RG flows*,*JHEP***10**(2018) 140 [arXiv:1808.03105] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [113]T. Ali, A. Bhattacharyya, S. Shajidul Haque, E.H. Kim and N. Moynihan,
*Time Evolution of Complexity: A Critique of Three Methods*,*JHEP***04**(2019) 087 [arXiv:1810.02734] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [114]H.W. Lin,
*Cayley graphs and complexity geometry*,*JHEP***02**(2019) 063 [arXiv:1808.06620] [INSPIRE].ADSCrossRefGoogle Scholar