Advertisement

Journal of High Energy Physics

, 2019:94 | Cite as

Stringy effects and the role of the singularity in holographic complexity

  • Richard NallyEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

There has been considerable recent interest in holographic complexity. The two leading conjectures on this subject hold that the quantum complexity of the boundary thermofield double state should be dual to either the volume of the Einstein-Rosen bridge connecting the two sides (CV conjecture) or to the action of the Wheeler-de-Witt patch of the bulk spacetime (CA conjecture). Although these conjectures are frequently studied in the context of pure Einstein gravity, from the perspective of string theory it is also natural to consider models of gravity in which general relativity is perturbed by higher powers of the Riemann tensor, suppressed by powers of the string length; in a holographic context, these corrections are dual to corrections in inverse powers of the ’t Hooft coupling. In this paper, we investigate the CV and CA conjectures in two stringy models of higher-curvature gravity. We find that the CV complexification rate remains well-behaved, but conversely that these corrections induce new divergences in the CA complexification rate that are absent in pure Einstein gravity. These divergences are intrinsically linked to the singularity, and appear to be generic in higher curvature theories. To the best of our knowledge, infinities originating at the singularity have not yet been observed elsewhere in the literature. We argue that these divergences imply that, in the CA picture, the complexification rate of the boundary theory is a nonanalytic function of the ’t Hooft coupling.

Keywords

AdS-CFT Correspondence Spacetime Singularities 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016) 44 [arXiv:1403.5695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edition, Cambridge University Press, New York, NY, U.S.A., (2011).Google Scholar
  3. [3]
    S. Aaronson, The Complexity of Quantum States and Transformations: From Quantum Money to Black Holes, 2016, arXiv:1607.05256 [INSPIRE].
  4. [4]
    A.R. Brown and L. Susskind, Second law of quantum complexity, Phys. Rev. D 97 (2018) 086015 [arXiv:1701.01107] [INSPIRE].
  5. [5]
    L. Susskind, Three Lectures on Complexity and Black Holes, 2018, arXiv:1810.11563 [INSPIRE].
  6. [6]
    M.A. Nielsen, A geometric approach to quantum circuit lower bounds, quant-ph/0502070.
  7. [7]
    M.R. Dowling and M.A. Nielsen, The geometry of quantum computation, quant-ph/0701004.
  8. [8]
    L. Susskind and Y. Zhao, Switchbacks and the Bridge to Nowhere, arXiv:1408.2823 [INSPIRE].
  9. [9]
    A.R. Brown, L. Susskind and Y. Zhao, Quantum Complexity and Negative Curvature, Phys. Rev. D 95 (2017) 045010 [arXiv:1608.02612] [INSPIRE].
  10. [10]
    S. Lloyd, Ultimate physical limits to computation, Nature 406 (2000) 1047 [quant-ph/9908043].
  11. [11]
    W. Cottrell and M. Montero, Complexity is simple!, JHEP 02 (2018) 039 [arXiv:1710.01175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    D. Carmi, S. Chapman, H. Marrochio, R.C. Myers and S. Sugishita, On the Time Dependence of Holographic Complexity, JHEP 11 (2017) 188 [arXiv:1709.10184] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    R.-Q. Yang, C. Niu, C.-Y. Zhang and K.-Y. Kim, Comparison of holographic and field theoretic complexities for time dependent thermofield double states, JHEP 02 (2018) 082 [arXiv:1710.00600] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  17. [17]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
  19. [19]
    L. Susskind, Entanglement is not enough, Fortsch. Phys. 64 (2016) 49 [arXiv:1411.0690] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].
  22. [22]
    T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].
  24. [24]
    D. Carmi, R.C. Myers and P. Rath, Comments on Holographic Complexity, JHEP 03 (2017) 118 [arXiv:1612.00433] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Akhavan, M. Alishahiha, A. Naseh and H. Zolfi, Complexity and Behind the Horizon Cut Off, JHEP 12 (2018) 090 [arXiv:1810.12015] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M. Alishahiha, K. Babaei Velni and M.R. Tanhayi, Complexity and Near Extremal Charged Black Branes, arXiv:1901.00689 [INSPIRE].
  27. [27]
    S.S. Hashemi, G. Jafari, A. Naseh and H. Zolfi, More on Complexity in Finite Cut Off Geometry, Phys. Lett. B 797 (2019) 134898 [arXiv:1902.03554] [INSPIRE].
  28. [28]
    A.R. Brown, H. Gharibyan, H.W. Lin, L. Susskind, L. Thorlacius and Y. Zhao, Complexity of Jackiw-Teitelboim gravity, Phys. Rev. D 99 (2019) 046016 [arXiv:1810.08741] [INSPIRE].
  29. [29]
    K. Goto, H. Marrochio, R.C. Myers, L. Queimada and B. Yoshida, Holographic Complexity Equals Which Action?, JHEP 02 (2019) 160 [arXiv:1901.00014] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Alishahiha, On complexity of Jackiw-Teitelboim gravity, Eur. Phys. J. C 79 (2019) 365 [arXiv:1811.09028] [INSPIRE].
  31. [31]
    B. Zwiebach, Curvature Squared Terms and String Theories, Phys. Lett. 156B (1985) 315 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    B. Zumino, Gravity Theories in More Than Four-Dimensions, Phys. Rept. 137 (1986) 109 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    D.J. Gross and E. Witten, Superstring Modifications of Einsteins Equations, Nucl. Phys. B 277 (1986) 1 [INSPIRE].
  34. [34]
    D. Tong, String Theory, arXiv:0908.0333 [INSPIRE].
  35. [35]
    A. Sen, Black Hole Entropy Function, Attractors and Precision Counting of Microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A. Dabholkar and S. Nampuri, Quantum black holes, Lect. Notes Phys. 851 (2012) 165 [arXiv:1208.4814].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    L. Susskind, Why do Things Fall?, arXiv:1802.01198 [INSPIRE].
  41. [41]
    D.A. Roberts, D. Stanford and A. Streicher, Operator growth in the SYK model, JHEP 06 (2018) 122 [arXiv:1802.02633] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    A.R. Brown, H. Gharibyan, A. Streicher, L. Susskind, L. Thorlacius and Y. Zhao, Falling Toward Charged Black Holes, Phys. Rev. D 98 (2018) 126016 [arXiv:1804.04156] [INSPIRE].
  43. [43]
    X.-L. Qi and A. Streicher, Quantum Epidemiology: Operator Growth, Thermal Effects and SYK, JHEP 08 (2019) 012 [arXiv:1810.11958] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    D.E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi and E. Altman, A Universal Operator Growth Hypothesis, arXiv:1812.08657 [INSPIRE].
  45. [45]
    P. Wang, H. Yang and S. Ying, Action growth in f (R) gravity, Phys. Rev. D 96 (2017) 046007 [arXiv:1703.10006] [INSPIRE].
  46. [46]
    W.-D. Guo, S.-W. Wei, Y.-Y. Li and Y.-X. Liu, Complexity growth rates for AdS black holes in massive gravity and f (R) gravity, Eur. Phys. J. C 77 (2017) 904 [arXiv:1703.10468] [INSPIRE].
  47. [47]
    M. Alishahiha, A. Faraji Astaneh, A. Naseh and M.H. Vahidinia, On complexity for F(R) and critical gravity, JHEP 05 (2017) 009 [arXiv:1702.06796] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    P.A. Cano, R.A. Hennigar and H. Marrochio, Complexity Growth Rate in Lovelock Gravity, Phys. Rev. Lett. 121 (2018) 121602 [arXiv:1803.02795] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    R.-G. Cai, S.-M. Ruan, S.-J. Wang, R.-Q. Yang and R.-H. Peng, Action growth for AdS black holes, JHEP 09 (2016) 161 [arXiv:1606.08307] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    Y.-S. An, R.-G. Cai and Y. Peng, Time Dependence of Holographic Complexity in Gauss-Bonnet Gravity, Phys. Rev. D 98 (2018) 106013 [arXiv:1805.07775] [INSPIRE].
  51. [51]
    P.A. Cano, Lovelock action with nonsmooth boundaries, Phys. Rev. D 97 (2018) 104048 [arXiv:1803.00172] [INSPIRE].
  52. [52]
    J. Jiang and H. Zhang, Surface term, corner term and action growth in F (R abcd) gravity theory, Phys. Rev. D 99 (2019) 086005 [arXiv:1806.10312] [INSPIRE].
  53. [53]
    J. Jiang, Action growth rate for a higher curvature gravitational theory, Phys. Rev. D 98 (2018) 086018 [arXiv:1810.00758] [INSPIRE].
  54. [54]
    H. Huang, X.-H. Feng and H. Lü, Holographic Complexity and Two Identities of Action Growth, Phys. Lett. B 769 (2017) 357 [arXiv:1611.02321] [INSPIRE].
  55. [55]
    Y.-C. Ding and T. Wang, Action growth rates of black holes in the Chern-Simons modified gravity, arXiv:1811.08113 [INSPIRE].
  56. [56]
    K. Meng, Holographic complexity of Born-Infeld black holes, arXiv:1810.02208 [INSPIRE].
  57. [57]
    P. Bueno, P.A. Cano and A. Ruipérez, Holographic studies of Einsteinian cubic gravity, JHEP 03 (2018) 150 [arXiv:1802.00018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    S. Chapman, H. Marrochio and R.C. Myers, Complexity of Formation in Holography, JHEP 01 (2017) 062 [arXiv:1610.08063] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part I, JHEP 06 (2018) 046 [arXiv:1804.07410] [INSPIRE].
  60. [60]
    S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes. Part II, JHEP 06 (2018) 114 [arXiv:1805.07262] [INSPIRE].
  61. [61]
    R.-G. Cai, M. Sasaki and S.-J. Wang, Action growth of charged black holes with a single horizon, Phys. Rev. D 95 (2017) 124002 [arXiv:1702.06766] [INSPIRE].
  62. [62]
    L. Sebastiani, L. Vanzo and S. Zerbini, Action growth for black holes in modified gravity, Phys. Rev. D 97 (2018) 044009 [arXiv:1710.05686] [INSPIRE].
  63. [63]
    S.A. Hosseini Mansoori, V. Jahnke, M.M. Qaemmaqami and Y.D. Olivas, Holographic complexity of anisotropic black branes, Phys. Rev. D 100 (2019) 046014 [arXiv:1808.00067] [INSPIRE].
  64. [64]
    A. Sen, Entropy function for heterotic black holes, JHEP 03 (2006) 008 [hep-th/0508042] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    R.C. Myers, Higher Derivative Gravity, Surface Terms and String Theory, Phys. Rev. D 36 (1987) 392 [INSPIRE].
  66. [66]
    R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [INSPIRE].
  67. [67]
    A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha, Universal holographic hydrodynamics at finite coupling, Phys. Lett. B 669 (2008) 364 [arXiv:0808.1837] [INSPIRE].
  68. [68]
    T. Banks and M.B. Green, Nonperturbative effects in AdS 5 × S 5 string theory and d = 4 SUSY Yang-Mills, JHEP 05 (1998) 002 [hep-th/9804170] [INSPIRE].
  69. [69]
    S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].
  70. [70]
    J. Pawelczyk and S. Theisen, AdS 5 × S 5 black hole metric at \( \mathcal{O} \)(α 3), JHEP 09 (1998) 010 [hep-th/9808126] [INSPIRE].
  71. [71]
    D.A. Galante and R.C. Myers, Holographic Renyi entropies at finite coupling, JHEP 08 (2013) 063 [arXiv:1305.7191] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].
  73. [73]
    A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [INSPIRE].
  74. [74]
    S. Grozdanov, On the connection between hydrodynamics and quantum chaos in holographic theories with stringy corrections, JHEP 01 (2019) 048 [arXiv:1811.09641] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    S. Grozdanov, K. Schalm and V. Scopelliti, Black hole scrambling from hydrodynamics, Phys. Rev. Lett. 120 (2018) 231601 [arXiv:1710.00921] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    J.Z. Simon, Higher Derivative Lagrangians, Nonlocality, Problems and Solutions, Phys. Rev. D 41 (1990) 3720 [INSPIRE].
  77. [77]
    E. Dyer and K. Hinterbichler, Boundary Terms, Variational Principles and Higher Derivative Modified Gravity, Phys. Rev. D 79 (2009) 024028 [arXiv:0809.4033] [INSPIRE].
  78. [78]
    N. Deruelle, M. Sasaki, Y. Sendouda and D. Yamauchi, Hamiltonian formulation of f(Riemann) theories of gravity, Prog. Theor. Phys. 123 (2010) 169 [arXiv:0908.0679] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  79. [79]
    A. Woszczyna, P. Plaszczyk, W. Czaja and Z.A. Golda, Symbolic Tensor CalculusFunctional and Dynamic Approach, arXiv:1603.05819 [INSPIRE].
  80. [80]
    ccgrgthe symbolic tensor analysis package, with tools for general relativity, http://library.wolfram.com/infocenter/MathSource/8848/.
  81. [81]
    xtensor: Fast abstract tensor computer algebra, http://xact.es/xTensor/.
  82. [82]
    M. Moosa, Divergences in the rate of complexification, Phys. Rev. D 97 (2018) 106016 [arXiv:1712.07137] [INSPIRE].
  83. [83]
    J.L.F. Barbon and E. Rabinovici, Holographic complexity and spacetime singularities, JHEP 01 (2016) 084 [arXiv:1509.09291] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. [84]
    S. Bolognesi, E. Rabinovici and S.R. Roy, On Some Universal Features of the Holographic Quantum Complexity of Bulk Singularities, JHEP 06 (2018) 016 [arXiv:1802.02045] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    A. Reynolds and S.F. Ross, Divergences in Holographic Complexity, Class. Quant. Grav. 34 (2017) 105004 [arXiv:1612.05439] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  86. [86]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
  87. [87]
    P. Bueno, V.S. Min, A.J. Speranza and M.R. Visser, Entanglement equilibrium for higher order gravity, Phys. Rev. D 95 (2017) 046003 [arXiv:1612.04374] [INSPIRE].
  88. [88]
    A. Belin, A. Lewkowycz and G. Sárosi, The boundary dual of the bulk symplectic form, Phys. Lett. B 789 (2019) 71 [arXiv:1806.10144] [INSPIRE].
  89. [89]
    A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a new York time story, JHEP 03 (2019) 044 [arXiv:1811.03097] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  90. [90]
    D.G. Boulware and S. Deser, String Generated Gravity Models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    J.T. Liu and W.A. Sabra, Hamilton-Jacobi Counterterms for Einstein-Gauss-Bonnet Gravity, Class. Quant. Grav. 27 (2010) 175014 [arXiv:0807.1256] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  92. [92]
    A. Buchel, Higher derivative corrections to near-extremal black holes in type IIB supergravity, Nucl. Phys. B 750 (2006) 45 [hep-th/0604167] [INSPIRE].
  93. [93]
    S. de Haro, A. Sinkovics and K. Skenderis, On alpha-prime corrections to D-brane solutions, Phys. Rev. D 68 (2003) 066001 [hep-th/0302136] [INSPIRE].
  94. [94]
    R.C. Myers, Superstring Gravity and Black Holes, Nucl. Phys. B 289 (1987) 701 [INSPIRE].
  95. [95]
    T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys. Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  96. [96]
    S. Chatterjee and M. Parikh, The second law in four-dimensional Einstein-Gauss-Bonnet gravity, Class. Quant. Grav. 31 (2014) 155007 [arXiv:1312.1323] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  97. [97]
    A.M. Charles and F. Larsen, Kerr-Newman Black Holes with String Corrections, JHEP 10 (2016) 142 [arXiv:1605.07622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  98. [98]
    T. Liko, Topological deformation of isolated horizons, Phys. Rev. D 77 (2008) 064004 [arXiv:0705.1518] [INSPIRE].
  99. [99]
    S. Sarkar and A.C. Wall, Second Law Violations in Lovelock Gravity for Black Hole Mergers, Phys. Rev. D 83 (2011) 124048 [arXiv:1011.4988] [INSPIRE].
  100. [100]
    M. Flory and N. Miekley, Complexity change under conformal transformations in AdS 3 /CFT 2, JHEP 05 (2019) 003 [arXiv:1806.08376] [INSPIRE].
  101. [101]
    M. Flory, WdW-patches in AdS 3 and complexity change under conformal transformations II, JHEP 05 (2019) 086 [arXiv:1902.06499] [INSPIRE].
  102. [102]
    S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a Definition of Complexity for Quantum Field Theory States, Phys. Rev. Lett. 120 (2018) 121602 [arXiv:1707.08582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  103. [103]
    R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP 10 (2017) 107 [arXiv:1707.08570] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  104. [104]
    R. Khan, C. Krishnan and S. Sharma, Circuit Complexity in Fermionic Field Theory, Phys. Rev. D 98 (2018) 126001 [arXiv:1801.07620] [INSPIRE].
  105. [105]
    L. Hackl and R.C. Myers, Circuit complexity for free fermions, JHEP 07 (2018) 139 [arXiv:1803.10638] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  106. [106]
    S. Chapman et al., Complexity and entanglement for thermofield double states, SciPost Phys. 6 (2019) 034 [arXiv:1810.05151] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    M. Guo, J. Hernandez, R.C. Myers and S.-M. Ruan, Circuit Complexity for Coherent States, JHEP 10 (2018) 011 [arXiv:1807.07677] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  108. [108]
    R.-Q. Yang, Complexity for quantum field theory states and applications to thermofield double states, Phys. Rev. D 97 (2018) 066004 [arXiv:1709.00921] [INSPIRE].
  109. [109]
    R.-Q. Yang, Y.-S. An, C. Niu, C.-Y. Zhang and K.-Y. Kim, More on complexity of operators in quantum field theory, JHEP 03 (2019) 161 [arXiv:1809.06678] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  110. [110]
    J. Jiang and X. Liu, Circuit Complexity for Fermionic Thermofield Double states, Phys. Rev. D 99 (2019) 026011 [arXiv:1812.00193] [INSPIRE].
  111. [111]
    A. Bhattacharyya, P. Caputa, S.R. Das, N. Kundu, M. Miyaji and T. Takayanagi, Path-Integral Complexity for Perturbed CFTs, JHEP 07 (2018) 086 [arXiv:1804.01999] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  112. [112]
    A. Bhattacharyya, A. Shekar and A. Sinha, Circuit complexity in interacting QFTs and RG flows, JHEP 10 (2018) 140 [arXiv:1808.03105] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  113. [113]
    T. Ali, A. Bhattacharyya, S. Shajidul Haque, E.H. Kim and N. Moynihan, Time Evolution of Complexity: A Critique of Three Methods, JHEP 04 (2019) 087 [arXiv:1810.02734] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  114. [114]
    H.W. Lin, Cayley graphs and complexity geometry, JHEP 02 (2019) 063 [arXiv:1808.06620] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations