Advertisement

Journal of High Energy Physics

, 2019:89 | Cite as

Resonant leptogenesis at TeV-scale and neutrinoless double beta decay

  • Takehiko Asaka
  • Takahiro YoshidaEmail author
Open Access
Regular Article - Theoretical Physics
  • 9 Downloads

Abstract

We investigate a resonant leptogenesis scenario by quasi-degenerate righthanded neutrinos which have TeV-scale masses. Especially, we consider the case when two right-handed neutrinos are responsible to leptogenesis and the seesaw mechanism for active neutrino masses, and assume that the CP violation occurs only in the mixing matrix of active neutrinos. In this case the sign of the baryon asymmetry depends on the Dirac and Majorana CP phases as well as the mixing angle of the right-handed neutrinos. It is shown how the yield of the baryon asymmetry correlates with these parameters. In addition, we find that the effective neutrino mass in the neutrinoless double beta decay receives an additional constraint in order to account for the observed baryon asymmetry depending on the masses and mixing angle of right-handed neutrinos.

Keywords

Cosmology of Theories beyond the SM Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    W. Buchmüller, R.D. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].
  3. [3]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36.ADSCrossRefGoogle Scholar
  5. [5]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  6. [6]
    G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].
  7. [7]
    G. Lazarides and Q. Shafi, Origin of matter in the inflationary cosmology, Phys. Lett. B 258 (1991) 305 [INSPIRE].
  8. [8]
    T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Leptogenesis in inflaton decay, Phys. Lett. B 464 (1999) 12 [hep-ph/9906366] [INSPIRE].
  9. [9]
    T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Leptogenesis in inflationary universe, Phys. Rev. D 61 (2000) 083512 [hep-ph/9907559] [INSPIRE].
  10. [10]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. 67B (1977) 421 [INSPIRE].
  11. [11]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, Tsukuba Japan (1979), pg. 95, KEK Report KEK-79-18 (1979).Google Scholar
  12. [12]
    T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, P. van Niewenhuizen and D.Z. Freedman eds., North Holland, Amsterdam The Netherlands (1980).Google Scholar
  14. [14]
    P. Ramond, The Family Group in Grand Unified Theories, in International Symposium on Fundamentals of Quantum Theory and Quantum Field Theory, Palm Coast U.S.A. (1979), pg. 265, preprint CALT-68-709 [hep-ph/9809459] [INSPIRE].
  15. [15]
    S.L. Glashow, The future of elementary particle physics, in Proceedings of the Cargése Summer Institute on Quarks and Leptons, Cargése France (1979), Plenum, New York U.S.A. (1980), pg. 707.Google Scholar
  16. [16]
    A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE].
  17. [17]
    E.K. Akhmedov, V.A. Rubakov and A. Yu. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].
  18. [18]
    T. Asaka and M. Shaposhnikov, The nuMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].
  19. [19]
    L. Canetti and M. Shaposhnikov, Baryon Asymmetry of the Universe in the NuMSM, JCAP 09 (2010) 001 [arXiv:1006.0133] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Asaka and S. Eijima, Direct Search for Right-handed Neutrinos and Neutrinoless Double Beta Decay, PTEP 2013 (2013) 113B02 [arXiv:1308.3550] [INSPIRE].
  21. [21]
    A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavor issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [INSPIRE].
  22. [22]
    E. Nardi, Y. Nir, E. Roulet and J. Racker, The Importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].
  23. [23]
    A. Abada, S. Davidson, A. Ibarra, F.X. Josse-Michaux, M. Losada and A. Riotto, Flavour Matters in Leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [INSPIRE].
  24. [24]
    S. Blanchet and P. Di Bari, Flavor effects on leptogenesis predictions, JCAP 03 (2007) 018 [hep-ph/0607330] [INSPIRE].
  25. [25]
    S. Pascoli, S.T. Petcov and A. Riotto, Connecting low energy leptonic CP-violation to leptogenesis, Phys. Rev. D 75 (2007) 083511 [hep-ph/0609125] [INSPIRE].
  26. [26]
    S. Pascoli, S.T. Petcov and A. Riotto, Leptogenesis and Low Energy CP-violation in Neutrino Physics, Nucl. Phys. B 774 (2007) 1 [hep-ph/0611338] [INSPIRE].
  27. [27]
    K. Moffat, S. Pascoli, S.T. Petcov and J. Turner, Leptogenesis from Low Energy CP Violation, JHEP 03 (2019) 034 [arXiv:1809.08251] [INSPIRE].
  28. [28]
    A. De Simone and A. Riotto, On the impact of flavour oscillations in leptogenesis, JCAP 02 (2007) 005 [hep-ph/0611357] [INSPIRE].
  29. [29]
    B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Sov. Phys. JETP 7 (1958) 172 [INSPIRE].Google Scholar
  30. [30]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    H. Päs and W. Rodejohann, Neutrinoless Double Beta Decay, New J. Phys. 17 (2015) 115010 [arXiv:1507.00170] [INSPIRE].
  32. [32]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
  34. [34]
    M. Garny, A. Kartavtsev and A. Hohenegger, Leptogenesis from first principles in the resonant regime, Annals Phys. 328 (2013) 26 [arXiv:1112.6428] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    S. Iso, K. Shimada and M. Yamanaka, Kadanoff-Baym approach to the thermal resonant leptogenesis, JHEP 04 (2014) 062 [arXiv:1312.7680] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P.S. Bhupal Dev, P. Millington, A. Pilaftsis and D. Teresi, Flavour Covariant Transport Equations: an Application to Resonant Leptogenesis, Nucl. Phys. B 886 (2014) 569 [arXiv:1404.1003] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  37. [37]
    P.S. Bhupal Dev, P. Millington, A. Pilaftsis and D. Teresi, Kadanoff-Baym approach to flavour mixing and oscillations in resonant leptogenesis, Nucl. Phys. B 891 (2015) 128 [arXiv:1410.6434] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron Rate in the Minimal Standard Model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].
  39. [39]
    G. Bambhaniya, P.S. Bhupal Dev, S. Goswami, S. Khan and W. Rodejohann, Naturalness, Vacuum Stability and Leptogenesis in the Minimal Seesaw Model, Phys. Rev. D 95 (2017) 095016 [arXiv:1611.03827] [INSPIRE].
  40. [40]
    NOvA collaboration, New constraints on oscillation parameters from ν e appearance and ν μ disappearance in the NOvA experiment, Phys. Rev. D 98 (2018) 032012 [arXiv:1806.00096] [INSPIRE].
  41. [41]
    T2K collaboration, Search for CP-violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 × 1021 Protons on Target, Phys. Rev. Lett. 121 (2018) 171802 [arXiv:1807.07891] [INSPIRE].
  42. [42]
    B. Garbrecht and P. Schwaller, Spectator Effects during Leptogenesis in the Strong Washout Regime, JCAP 10 (2014) 012 [arXiv:1404.2915] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Plümacher, Baryogenesis and lepton number violation, Z. Phys. C 74 (1997) 549 [hep-ph/9604229] [INSPIRE].
  44. [44]
    M. Plümacher, Baryon asymmetry, neutrino mixing and supersymmetric SO(10) unification, Ph.D. thesis, Hamburg University, Hamburg Germany (1998) [hep-ph/9807557] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsNiigata UniversityNiigataJapan
  2. 2.Graduate School of Science and TechnologyNiigata UniversityNiigataJapan

Personalised recommendations