Advertisement

Journal of High Energy Physics

, 2019:88 | Cite as

Novel color superconducting phases of \( \mathcal{N} \) = 4 super Yang-Mills at strong coupling

  • Oscar HenrikssonEmail author
  • Carlos Hoyos
  • Niko Jokela
Open Access
Regular Article - Theoretical Physics
  • 19 Downloads

Abstract

We revisit the large-Nc phase diagram of \( \mathcal{N} \) = 4 super Yang-Mills theory at finite R-charge density and strong coupling, by means of the AdS/CFT correspondence. We conjecture new phases that result from a black hole shedding some of its charge through the nucleation of probe color D3-branes that remain at a finite distance from the black hole when the dual field theory lives on a sphere. In the corresponding ground states the color group is partially Higgsed, so these phases can be identified as having a type of color superconductivity. The new phases would appear at intermediate values of the R-charge chemical potential and we expect them to be metastable but long-lived in the large-Nc limit.

Keywords

D-branes Gauge-gravity correspondence Spontaneous Symmetry Breaking Holography and quark-gluon plasmas 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].
  5. [5]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
  6. [6]
    A.V. Ramallo, Introduction to the AdS/CFT correspondence, Springer Proc. Phys. 161 (2015) 411 [arXiv:1310.4319].
  7. [7]
    N. Brambilla et al., QCD and Strongly Coupled Gauge Theories: Challenges and Perspectives, Eur. Phys. J. C 74 (2014) 2981 [arXiv:1404.3723] [INSPIRE].
  8. [8]
    S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
  9. [9]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    R.-G. Cai and K.-S. Soh, Critical behavior in the rotating D-branes, Mod. Phys. Lett. A 14 (1999) 1895 [hep-th/9812121] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Cvetič and S.S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Cvetič and S.S. Gubser, Thermodynamic stability and phases of general spinning branes, JHEP 07 (1999) 010 [hep-th/9903132] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    P. Basu and S.R. Wadia, R-charged AdS 5 black holes and large N unitary matrix models, Phys. Rev. D 73 (2006) 045022 [hep-th/0506203] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    D. Yamada and L.G. Yaffe, Phase diagram of N = 4 super-Yang-Mills theory with R-symmetry chemical potentials, JHEP 09 (2006) 027 [hep-th/0602074] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    T.J. Hollowood, S.P. Kumar, A. Naqvi and P. Wild, N = 4 SYM on S 3 with Near Critical Chemical Potentials, JHEP 08 (2008) 046 [arXiv:0803.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    D. Yamada, Metastability of R-charged black holes, Class. Quant. Grav. 24 (2007) 3347 [hep-th/0701254] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    D. Yamada, Fragmentation of Spinning Branes, Class. Quant. Grav. 25 (2008) 145006 [arXiv:0802.3508] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    K. Rajagopal and F. Wilczek, The Condensed matter physics of QCD, in At the frontier of particle physics. Handbook of QCD. Vol. 13, M. Shifman and B. Ioffe, eds., World Scientific, Singapore (2000) pg. 2061 [hep-ph/0011333] [INSPIRE].
  23. [23]
    H.-Y. Chen, K. Hashimoto and S. Matsuura, Towards a Holographic Model of Color-Flavor Locking Phase, JHEP 02 (2010) 104 [arXiv:0909.1296] [INSPIRE].ADSzbMATHGoogle Scholar
  24. [24]
    P. Basu, F. Nogueira, M. Rozali, J.B. Stang and M. Van Raamsdonk, Towards A Holographic Model of Color Superconductivity, New J. Phys. 13 (2011) 055001 [arXiv:1101.4042] [INSPIRE].
  25. [25]
    M. Rozali, D. Smyth and E. Sorkin, Holographic Higgs Phases, JHEP 08 (2012) 118 [arXiv:1202.5271] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K. Bitaghsir Fadafan, J. Cruz Rojas and N. Evans, Holographic description of color superconductivity, Phys. Rev. D 98 (2018) 066010 [arXiv:1803.03107] [INSPIRE].
  27. [27]
    A.F. Faedo, D. Mateos, C. Pantelidou and J. Tarrío, A Supersymmetric Color Superconductor from Holography, JHEP 05 (2019) 106 [arXiv:1807.09712] [INSPIRE].
  28. [28]
    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Continuous distributions of D3-branes and gauged supergravity, JHEP 07 (2000) 038 [hep-th/9906194] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    K. Behrndt, M. Cvetič and W.A. Sabra, Nonextreme black holes of five-dimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hep-th/9810227] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].
  31. [31]
    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    C.T. Asplund and D. Berenstein, Small AdS black holes from SYM, Phys. Lett. B 673 (2009) 264 [arXiv:0809.0712] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    N. Jokela, A. Pönni and A. Vuorinen, Small black holes in global AdS spacetime, Phys. Rev. D 93 (2016) 086004 [arXiv:1508.00859] [INSPIRE].
  34. [34]
    M. Hanada and J. Maltz, A proposal of the gauge theory description of the small Schwarzschild black hole in AdS 5 × S 5, JHEP 02 (2017) 012 [arXiv:1608.03276] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    L.G. Yaffe, Large N phase transitions and the fate of small Schwarzschild-AdS black holes, Phys. Rev. D 97 (2018) 026010 [arXiv:1710.06455] [INSPIRE].
  36. [36]
    D. Berenstein, Submatrix deconfinement and small black holes in AdS, JHEP 09 (2018) 054 [arXiv:1806.05729] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    M. Hanada, G. Ishiki and H. Watanabe, Partial Deconfinement, JHEP 03 (2019) 145 [arXiv:1812.05494] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Emergent Quantum Near-Criticality from Baryonic Black Branes, JHEP 03 (2010) 093 [arXiv:0911.0400] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    LIGO Scientific and Virgo collaborations, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
  41. [41]
    C. Hoyos, D. Rodr´ıguez Fernández, N. Jokela and A. Vuorinen, Holographic quark matter and neutron stars, Phys. Rev. Lett. 117 (2016) 032501 [arXiv:1603.02943] [INSPIRE].
  42. [42]
    C. Hoyos, N. Jokela, D. Rodr´ıguez Fernández and A. Vuorinen, Breaking the sound barrier in AdS/CFT, Phys. Rev. D 94 (2016) 106008 [arXiv:1609.03480] [INSPIRE].
  43. [43]
    C. Ecker, C. Hoyos, N. Jokela, D. Rodr´ıguez Fernández and A. Vuorinen, Stiff phases in strongly coupled gauge theories with holographic duals, JHEP 11 (2017) 031 [arXiv:1707.00521] [INSPIRE].
  44. [44]
    E. Annala, C. Ecker, C. Hoyos, N. Jokela, D. Rodr´ıguez Fernández and A. Vuorinen, Holographic compact stars meet gravitational wave constraints, JHEP 12 (2018) 078 [arXiv:1711.06244] [INSPIRE].
  45. [45]
    N. Jokela, M. Järvinen and J. Remes, Holographic QCD in the Veneziano limit and neutron stars, JHEP 03 (2019) 041 [arXiv:1809.07770] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    T. Ishii, M. Järvinen and G. Nijs, Cool baryon and quark matter in holographic QCD, JHEP 07 (2019) 003 [arXiv:1903.06169] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    P.M. Chesler, N. Jokela, A. Loeb and A. Vuorinen, Finite-temperature Equations of State for Neutron Star Mergers, arXiv:1906.08440 [INSPIRE].
  48. [48]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Helsinki Institute of PhysicsUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of PhysicsUniversidad de OviedoOviedoSpain
  4. 4.Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA)OviedoSpain

Personalised recommendations