Advertisement

Journal of High Energy Physics

, 2019:74 | Cite as

Modular A4 symmetry models of neutrinos and charged leptons

  • Gui-Jun DingEmail author
  • Stephen F. King
  • Xiang-Gan Liu
Open Access
Regular Article - Theoretical Physics
  • 10 Downloads

Abstract

We present a comprehensive analysis of neutrino mass and lepton mixing in theories with A4 modular symmetry, where the only flavon field is the single modulus field τ, and all masses and Yukawa couplings are modular forms. Similar to previous analyses, we discuss all the simplest neutrino sectors arising from both the Weinberg operator and the type I seesaw mechanism, with lepton doublets and right-handed neutrinos assumed to be triplets of A4. Unlike previous analyses, we allow right-handed charged leptons to transform as all combinations of 1, 1′ and 1′′ representations of A4, using the simplest different modular weights to break the degeneracy, leading to ten different charged lepton Yukawa matrices, instead of the usual one. This implies ten different Weinberg models and thirty different type I seesaw models, which we analyse in detail. We find that fourteen models for both NO and IO neutrino mass ordering can accommodate the data, as compared to one in previous analyses, providing many new possibilities.

Keywords

Discrete Symmetries Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S.F. King, Unified models of neutrinos, flavour and CP-violation, Prog. Part. Nucl. Phys. 94 (2017) 217 [arXiv:1701.04413] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Y. Koide, S 4 flavor symmetry embedded into SU(3) and lepton masses and mixing, JHEP 08 (2007) 086 [arXiv:0705.2275] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
  5. [5]
    Y.-L. Wu, SU(3) gauge family symmetry and prediction for the lepton-flavor mixing and neutrino masses with maximal spontaneous CP-violation, Phys. Lett. B 714 (2012) 286 [arXiv:1203.2382] [INSPIRE].ADSGoogle Scholar
  6. [6]
    A. Merle and R. Zwicky, Explicit and spontaneous breaking of SU(3) into its finite subgroups, JHEP 02 (2012) 128 [arXiv:1110.4891] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    B.L. Rachlin and T.W. Kephart, Spontaneous breaking of gauge groups to discrete symmetries, JHEP 08 (2017) 110 [arXiv:1702.08073] [INSPIRE].
  8. [8]
    C. Luhn, Spontaneous breaking of SU(3) to finite family symmetries: a pedestrians approach, JHEP 03 (2011) 108 [arXiv:1101.2417] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    S.F. King and Y.-L. Zhou, Spontaneous breaking of SO(3) to finite family symmetries with supersymmetryan A 4 model, JHEP 11 (2018) 173 [arXiv:1809.10292] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) grand unified model of tri-bimaximal mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T.J. Burrows and S.F. King, A 4 family symmetry from SU(5) SUSY GUTs in 6d, Nucl. Phys. B 835 (2010) 174 [arXiv:0909.1433] [INSPIRE].
  12. [12]
    T.J. Burrows and S.F. King, A 4 × SU(5) SUSY GUT of flavour in 8d, Nucl. Phys. B 842 (2011) 107 [arXiv:1007.2310] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    F.J. de Anda and S.F. King, An S 4 × SU(5) SUSY GUT of flavour in 6d, JHEP 07 (2018) 057 [arXiv:1803.04978] [INSPIRE].
  14. [14]
    A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian discrete flavor symmetries from T 2 /Z N orbifolds, JHEP 07 (2009) 053 [arXiv:0906.0468] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    T. Asaka, W. Buchmüller and L. Covi, Gauge unification in six-dimensions, Phys. Lett. B 523 (2001) 199 [hep-ph/0108021] [INSPIRE].
  16. [16]
    G. Altarelli, F. Feruglio and Y. Lin, Tri-bimaximal neutrino mixing from orbifolding, Nucl. Phys. B 775 (2007) 31 [hep-ph/0610165] [INSPIRE].
  17. [17]
    A. Adulpravitchai and M.A. Schmidt, Flavored orbifold GUTan SO(10) × S 4 model, JHEP 01 (2011) 106 [arXiv:1001.3172] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-Abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135 [hep-ph/0611020] [INSPIRE].
  19. [19]
    F.J. de Anda and S.F. King, SU(3) × SO(10) in 6d, JHEP 10 (2018) 128 [arXiv:1807.07078] [INSPIRE].
  20. [20]
    T. Kobayashi, S. Nagamoto, S. Takada, S. Tamba and T.H. Tatsuishi, Modular symmetry and non-Abelian discrete flavor symmetries in string compactification, Phys. Rev. D 97 (2018) 116002 [arXiv:1804.06644] [INSPIRE].
  21. [21]
    A. Baur, H.P. Nilles, A. Trautner and P.K.S. Vaudrevange, Unification of flavor, CP and modular symmetries, Phys. Lett. B 795 (2019) 7 [arXiv:1901.03251] [INSPIRE].
  22. [22]
    A. Giveon, E. Rabinovici and G. Veneziano, Duality in string background space, Nucl. Phys. B 322 (1989) 167 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].
  24. [24]
    R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite modular groups and lepton mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].
  25. [25]
    F. Feruglio, Are neutrino masses modular forms?, in From my vast repertoire... : Guido Altarellis legacy, A. Levy, S. Forte and G. Ridolfi eds., World Scientific, Singapore (2019), pg. 227 [arXiv:1706.08749] [INSPIRE].
  26. [26]
    J.C. Criado and F. Feruglio, Modular invariance faces precision neutrino data, SciPost Phys. 5 (2018) 042 [arXiv:1807.01125] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Kobayashi, K. Tanaka and T.H. Tatsuishi, Neutrino mixing from finite modular groups, Phys. Rev. D 98 (2018) 016004 [arXiv:1803.10391] [INSPIRE].
  28. [28]
    T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T.H. Tatsuishi and H. Uchida, Finite modular subgroups for fermion mass matrices and baryon/lepton number violation, Phys. Lett. B 794 (2019) 114 [arXiv:1812.11072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, Modular S 3 invariant flavor model in SU(5) GUT, arXiv:1906.10341 [INSPIRE].
  30. [30]
    H. Okada and Y. Orikasa, A modular S 3 symmetric radiative seesaw model, arXiv:1907.04716 [INSPIRE].
  31. [31]
    T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, Modular A 4 invariance and neutrino mixing, JHEP 11 (2018) 196 [arXiv:1808.03012] [INSPIRE].
  32. [32]
    H. Okada and M. Tanimoto, CP violation of quarks in A 4 modular invariance, Phys. Lett. B 791 (2019) 54 [arXiv:1812.09677] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    P.P. Novichkov, S.T. Petcov and M. Tanimoto, Trimaximal neutrino mixing from modular A 4 invariance with residual symmetries, Phys. Lett. B 793 (2019) 247 [arXiv:1812.11289] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    T. Nomura and H. Okada, A two loop induced neutrino mass model with modular A 4 symmetry, arXiv:1906.03927 [INSPIRE].
  35. [35]
    J.T. Penedo and S.T. Petcov, Lepton masses and mixing from modular S 4 symmetry, Nucl. Phys. B 939 (2019) 292 [arXiv:1806.11040] [INSPIRE].
  36. [36]
    P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular S 4 models of lepton masses and mixing, JHEP 04 (2019) 005 [arXiv:1811.04933] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, New A 4 lepton flavor model from S 4 modular symmetry, arXiv:1907.09141 [INSPIRE].
  38. [38]
    P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular A 5 symmetry for flavour model building, JHEP 04 (2019) 174 [arXiv:1812.02158] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    G.-J. Ding, S.F. King and X.-G. Liu, Neutrino mass and mixing with A 5 modular symmetry, arXiv:1903.12588 [INSPIRE].
  40. [40]
    F.J. de Anda, S.F. King and E. Perdomo, SU(5) grand unified theory with A 4 modular symmetry, arXiv:1812.05620 [INSPIRE].
  41. [41]
    I. De Medeiros Varzielas, S.F. King and Y.-L. Zhou, Multiple modular symmetries as the origin of flavour, arXiv:1906.02208 [INSPIRE].
  42. [42]
    P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Generalised CP symmetry in modular-invariant models of flavour, JHEP 07 (2019) 165 [arXiv:1905.11970] [INSPIRE].
  43. [43]
    X.-G. Liu and G.-J. Ding, Neutrino masses and mixing from double covering of finite modular groups, JHEP 08 (2019) 134 [arXiv:1907.01488] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    J.H. Bruinier, G. van der Geer, G. Harder and D. Zagier, The 1-2-3 of modular forms, Springer, Berlin Heidelberg, Germany (2008).CrossRefzbMATHGoogle Scholar
  45. [45]
    F. Diamond and J.M. Shurman, A first course in modular forms, Grad. Texts Math. 228, Springer, New York, NY, U.S.A. (2005).Google Scholar
  46. [46]
    R.C. Gunning, Lectures on modular forms, Princeton University Press, Princeton, NJ, U.S.A. (1962).CrossRefzbMATHGoogle Scholar
  47. [47]
    I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ 23 , δ CP and the mass ordering, JHEP 01 (2019) 106 [arXiv:1811.05487] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    F. Feruglio, K.M. Patel and D. Vicino, Order and anarchy hand in hand in 5D SO(10), JHEP 09 (2014) 095 [arXiv:1407.2913] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    G. Ross and M. Serna, Unification and fermion mass structure, Phys. Lett. B 664 (2008) 97 [arXiv:0704.1248] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  53. [53]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Interdisciplinary Center for Theoretical Study and Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.

Personalised recommendations