Journal of High Energy Physics

, 2019:72 | Cite as

Correlations far from equilibrium in charged strongly coupled fluids subjected to a strong magnetic field

  • Casey Cartwright
  • Matthias KaminskiEmail author
Open Access
Regular Article - Theoretical Physics


Within a holographic model, we calculate the time evolution of 2-point and 1-point correlation functions (of selected operators) within a charged strongly coupled system of many particles. That system is thermalizing from an anisotropic initial charged state far from equilibrium towards equilibrium while subjected to a constant external magnetic field. One main result is that thermalization times for 2-point functions are significantly (approximately three times) larger than those of 1-point functions. Magnetic field and charge amplify this difference, generally increasing thermalization times. However, there is also a competition of scales between charge density, magnetic field, and initial anisotropy, which leads to an array of qualitative changes on the 2- and 1-point functions. There appears to be a strong effect of the medium on 2-point functions at early times, but approximately none at later times. At strong magnetic fields, an apparently universal thermalization time emerges, at which all 2-point functions appear to thermalize regardless of any other scale in the system. Hence, this time scale is referred to as saturation time scale. As extremality is approached in the purely charged case, 2- and 1-point functions appear to equilibrate at infinitely late time. We also compute 2-point functions of charged operators. Our results can be taken to model thermalization in heavy ion collisions, or thermalization in selected condensed matter systems.


AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) Holography and quark-gluon plasmas Quark-Gluon Plasma 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P. Romatschke and U. Romatschke, Relativistic fluid dynamics in and out of equilibrium, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge U.K. )2019, arXiv:1712.05815 [INSPIRE].
  2. [2]
    G. Endrodi et al., Universal Magnetoresponse in QCD and \( \mathcal{N} \) = 4 SYM, JHEP 09 (2018) 070 [arXiv:1806.09632] [INSPIRE].
  3. [3]
    U. Gürsoy et al., Charge-dependent flow induced by magnetic and electric fields in heavy ion collisions, Phys. Rev. C 98 (2018) 055201 [arXiv:1806.05288] [INSPIRE].
  4. [4]
    Y.J. Ye, Y.G. Ma, A.H. Tang and G. Wang, Effect of magnetic fields on pairs of oppositely charged particles in ultrarelativistic heavy-ion collisions, Phys. Rev. C 99 (2019) 044901 [arXiv:1810.04600] [INSPIRE].
  5. [5]
    U. Gürsoy, D. Kharzeev and K. Rajagopal, Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions, Phys. Rev. C 89 (2014) 054905 [arXiv:1401.3805] [INSPIRE].
  6. [6]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M. Kaminski, C. F. Uhlemann, M. Bleicher and J. Schaffner-Bielich, Anomalous hydrodynamics kicks neutron stars, Phys. Lett. B 760 (2016) 170 [arXiv:1410.3833] [INSPIRE].
  8. [8]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  10. [10]
    S. Ferrara and C. Fronsdal, Gauge fields as composite boundary excitations, Phys. Lett. B 433 (1998) 19 [hep-th/9802126] [INSPIRE].
  11. [11]
    E. Keski-Vakkuri, Bulk and boundary dynamics in BTZ black holes, Phys. Rev. D 59 (1999) 104001 [hep-th/9808037] [INSPIRE].
  12. [12]
    V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of Anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].
  13. [13]
    G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].
  14. [14]
    S. Kalyana Rama and B. Sathiapalan, On the role of chaos in the AdS/CFT connection, Mod. Phys. Lett. A 14 (1999) 2635 [hep-th/9905219] [INSPIRE].
  15. [15]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Spherically collapsing matter in AdS, holography and shellons, Nucl. Phys. B 563 (1999) 279 [hep-th/9905227] [INSPIRE].
  16. [16]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Vacua, propagators and holographic probes in AdS/CFT, JHEP 01 (1999) 002 [hep-th/9812007] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP 02 (2000) 039 [hep-th/9912209] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].
  19. [19]
    J. Aparicio and E. Lopez, Evolution of two-point functions from holography, JHEP 12 (2011) 082 [arXiv:1109.3571] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].
  22. [22]
    E. Caceres and A. Kundu, Holographic thermalization with chemical potential, JHEP 09 (2012) 055 [arXiv:1205.2354] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    H. Ebrahim and M. Headrick, Instantaneous thermalization in holographic plasmas, arXiv:1010.5443 [INSPIRE].
  24. [24]
    V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev. D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].
  25. [25]
    G. Camilo, B. Cuadros-Melgar and E. Abdalla, Holographic thermalization with a chemical potential from Born-Infeld electrodynamics, JHEP 02 (2015) 103 [arXiv:1412.3878] [INSPIRE].
  26. [26]
    Y.-P. Hu, X.-X. Zeng and H.-Q. Zhang, Holographic thermalization and generalized vaidya-AdS solutions in massive gravity, Phys. Lett. B 765 (2017) 120 [arXiv:1611.00677] [INSPIRE].
  27. [27]
    A. Giordano, N.E. Grandi and G.A. Silva, Holographic thermalization of charged operators, JHEP 05 (2015) 016 [arXiv:1412.7953] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S.-J. Zhang, B. Wang, E. Abdalla and E. Papantonopoulos, Holographic thermalization in Gauss-Bonnet gravity with de Sitter boundary, Phys. Rev. D 91 (2015) 106010 [arXiv:1412.7073] [INSPIRE].
  29. [29]
    D. Galante and M. Schvellinger, Thermalization with a chemical potential from AdS spaces, JHEP 07 (2012) 096 [arXiv:1205.1548] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Dey, S. Mahapatra and T. Sarkar, Holographic thermalization with Weyl corrections, JHEP 01 (2016) 088 [arXiv:1510.00232] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    I.Ya. Arefeva and I.V. Volovich, On holographic thermalization and dethermalization of quark-gluon plasma, arXiv:1211.6041 [INSPIRE].
  32. [32]
    S.-J. Zhang and E. Abdalla, Holographic thermalization in charged dilaton Anti-de Sitter spacetime, Nucl. Phys. B 896 (2015) 569 [arXiv:1503.07700] [INSPIRE].
  33. [33]
    D. Garfinkle and L.A. Pando Zayas, Rapid thermalization in field theory from gravitational collapse, Phys. Rev. D 84 (2011) 066006 [arXiv:1106.2339] [INSPIRE].
  34. [34]
    D.S. Ageev and I.Ya. Aref’eva, Holographic non-equilibrium heating, JHEP 03 (2018) 103 [arXiv:1704.07747] [INSPIRE].
  35. [35]
    T. Andrade, J. Casalderrey-Solana and A. Ficnar, Holographic isotropisation in Gauss-Bonnet gravity, JHEP 02 (2017) 016 [arXiv:1610.08987] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    S. Grozdanov and W. van der Schee, Coupling constant corrections in a holographic model of heavy ion collisions, Phys. Rev. Lett. 119 (2017) 011601 [arXiv:1610.08976] [INSPIRE].
  37. [37]
    D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS 5, JHEP 08 (2008) 027 [arXiv:0803.3226] [INSPIRE].
  38. [38]
    L. Álvarez-Gaumé et al., Critical formation of trapped surfaces in the collision of gravitational shock waves, JHEP 02 (2009) 009 [arXiv:0811.3969] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    S. Lin and E. Shuryak, Grazing collisions of gravitational shock waves and entropy production in heavy ion collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [INSPIRE].
  40. [40]
    S.S. Gubser, S.S. Pufu and A. Yarom, Off-center collisions in AdS 5 with applications to multiplicity estimates in heavy-ion collisions, JHEP 11 (2009) 050 [arXiv:0902.4062] [INSPIRE].
  41. [41]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].
  43. [43]
    E. Shuryak, S.-J. Sin and I. Zahed, A gravity dual of RHIC collisions, J. Korean Phys. Soc. 50 (2007) 384 [hep-th/0511199] [INSPIRE].
  44. [44]
    R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].
  45. [45]
    S. Nakamura and S.-J. Sin, A holographic dual of hydrodynamics, JHEP 09 (2006) 020 [hep-th/0607123] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    R.A. Janik and R.B. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant perfect fluid, Phys. Rev. D 74 (2006) 046007 [hep-th/0606149] [INSPIRE].
  47. [47]
    D. Bak and R.A. Janik, From static to evolving geometries: R-charged hydrodynamics from supergravity, Phys. Lett. B 645 (2007) 303 [hep-th/0611304] [INSPIRE].
  48. [48]
    S.-J. Sin, S. Nakamura and S.P. Kim, Elliptic flow, Kasner universe and holographic dual of RHIC fireball, JHEP 12 (2006) 075 [hep-th/0610113] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    M.P. Heller and R.A. Janik, Viscous hydrodynamics relaxation time from AdS/CFT, Phys. Rev. D 76 (2007) 025027 [hep-th/0703243] [INSPIRE].
  50. [50]
    M.P. Heller et al., Consistent holographic description of boost-invariant plasma, Phys. Rev. Lett. 102 (2009) 041601 [arXiv:0805.3774] [INSPIRE].
  51. [51]
    G. Beuf, M.P. Heller, R.A. Janik and R. Peschanski, Boost-invariant early time dynamics from AdS/CFT, JHEP 10 (2009) 043 [arXiv:0906.4423] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].
  53. [53]
    M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong coupling isotropization of non-abelian plasmas simplified, Phys. Rev. Lett. 108 (2012) 191601 [arXiv:1202.0981] [INSPIRE].
  54. [54]
    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111 (2013) 181601 [arXiv:1305.4919] [INSPIRE].
  55. [55]
    W. van der Schee, P. Romatschke and S. Pratt, Fully dynamical simulation of central nuclear collisions, Phys. Rev. Lett. 111 (2013) 222302 [arXiv:1307.2539] [INSPIRE].
  56. [56]
    P.M. Chesler, N. Kilbertus and W. van der Schee, Universal hydrodynamic flow in holographic planar shock collisions, JHEP 11 (2015) 135 [arXiv:1507.02548] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    P.M. Chesler, Colliding shock waves and hydrodynamics in small systems, Phys. Rev. Lett. 115 (2015) 241602 [arXiv:1506.02209] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    L. Bellantuono, P. Colangelo, F. De Fazio and F. Giannuzzi, Thermalization of a boost-invariant non-Abelian plasma: holographic approach with boundary sourcing, PoS(EPS-HEP2015) 217 [arXiv:1510.04458] [INSPIRE].
  59. [59]
    L. Bellantuono, P. Colangelo, F. De Fazio and F. Giannuzzi, On thermalization of a boost-invariant non Abelian plasma, JHEP 07 (2015) 053 [arXiv:1503.01977] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J. Casalderrey-Solana, D. Mateos, W. van der Schee and M. Triana, Holographic heavy ion collisions with baryon charge, JHEP 09 (2016) 108 [arXiv:1607.05273] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    R. Critelli, R. Rougemont and J. Noronha, Holographic Bjorken flow of a hot and dense fluid in the vicinity of a critical point, Phys. Rev. D 99 (2019) 066004 [arXiv:1805.00882] [INSPIRE].
  62. [62]
    J.F. Fuini and L.G. Yaffe, Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field, JHEP 07 (2015) 116 [arXiv:1503.07148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    M.P. Heller, D. Mateos, W. van der Schee and M. Triana, Holographic isotropization linearized, JHEP 09 (2013) 026 [arXiv:1304.5172] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    C. Ecker, D. Grumiller and S.A. Stricker, Evolution of holographic entanglement entropy in an anisotropic system, JHEP 07 (2015) 146 [arXiv:1506.02658] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    C. Ecker et al., Exploring nonlocal observables in shock wave collisions, JHEP 11 (2016) 054 [arXiv:1609.03676] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    L.-G. Pang, G. Endrődi and H. Petersen, Magnetic-field-induced squeezing effect at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider, Phys. Rev. C 93 (2016) 044919 [arXiv:1602.06176] [INSPIRE].
  68. [68]
    M. Ammon et al., Chiral transport in strong magnetic fields from hydrodynamics & holography, to appear.Google Scholar
  69. [69]
    P. Kovtun, Thermodynamics of polarized relativistic matter, JHEP 07 (2016) 028 [arXiv:1606.01226] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    J. Hernandez and P. Kovtun, Relativistic magnetohydrodynamics, JHEP 05 (2017) 001 [arXiv:1703.08757] [INSPIRE].
  71. [71]
    P. Kovtun and A. Shukla, Kubo formulas for thermodynamic transport coefficients, JHEP 10 (2018) 007 [arXiv:1806.05774] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    M. Ammon et al., Quasinormal modes of charged magnetic black branes & chiral magnetic transport, JHEP 04 (2017) 067 [arXiv:1701.05565] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    Y. Bu, T. Demircik and M. Lublinsky, Gradient resummation for nonlinear chiral transport: an insight from holography, Eur. Phys. J. C 79 (2019) 54 [arXiv:1807.11908] [INSPIRE].
  74. [74]
    Y. Bu, T. Demircik and M. Lublinsky, Nonlinear chiral transport from holography, JHEP 01 (2019) 078 [arXiv:1807.08467] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    Y. Bu, M. Lublinsky and A. Sharon, Anomalous transport from holography: part II, Eur. Phys. J. C 77 (2017) 194 [arXiv:1609.09054] [INSPIRE].
  76. [76]
    Y. Bu, M. Lublinsky and A. Sharon, Anomalous transport from holography: part I, JHEP 11 (2016) 093 [arXiv:1608.08595] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    S. Grozdanov and N. Poovuttikul, Generalised global symmetries in holography: magnetohydrodynamic waves in a strongly interacting plasma, JHEP 04 (2019) 141 [arXiv:1707.04182] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    S. Grozdanov, A. Lucas and N. Poovuttikul, Holography and hydrodynamics with weakly broken symmetries, Phys. Rev. D 99 (2019) 086012 [arXiv:1810.10016] [INSPIRE].
  79. [79]
    J. Armas and A. Jain, Magnetohydrodynamics as superfluidity, Phys. Rev. Lett. 122 (2019) 141603 [arXiv:1808.01939] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    J. Armas and A. Jain, One-form superfluids & magnetohydrodynamics, arXiv:1811.04913 [INSPIRE].
  81. [81]
    S. Grozdanov, D.M. Hofman and N. Iqbal, Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev. D 95 (2017) 096003 [arXiv:1610.07392] [INSPIRE].
  82. [82]
    H. Bondi, Gravitational waves in general relativity, Nature 186 (1960) 535 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  83. [83]
    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103.Google Scholar
  84. [84]
    P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP 07 (2014) 086 [arXiv:1309.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    J. Boyd, Chebyshev and Fourier spectral methods, Dover Publications Inc., U.S.A. (2000).Google Scholar
  86. [86]
    W. van der Schee, Gravitational collisions and the quark-gluon plasma, Ph.D. thesis, Utrecht University, Utrecht, The Netherlands (2014).Google Scholar
  87. [87]
    S. Janiszewski and M. Kaminski, Quasinormal modes of magnetic and electric black branes versus far from equilibrium anisotropic fluids, Phys. Rev. D 93 (2016) 025006 [arXiv:1508.06993] [INSPIRE].
  88. [88]
    E. D’Hoker and P. Kraus, Magnetic brane solutions in AdS, JHEP 10 (2009) 088 [arXiv:0908.3875] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  89. [89]
    M. Ammon et al., Holographic quenches and anomalous transport, JHEP 09 (2016) 131 [arXiv:1607.06817] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    M. Ammon, J. Leiber and R.P. Macedo, Phase diagram of 4D field theories with chiral anomaly from holography, JHEP 03 (2016) 164 [arXiv:1601.02125] [INSPIRE].
  91. [91]
    H.-J. Matschull, Black hole creation in (2 + 1)-dimensions, Class. Quant. Grav. 16 (1999) 1069 [gr-qc/9809087] [INSPIRE].
  92. [92]
    W.H. Press et al., Numerical recipes; the art of scientific computing, 3rd edition, Cambridge University Press, Cambridge U.K. (2007).Google Scholar
  93. [93]
    E.J. Konopinski, What the electromagnetic vector potential describes, Am. J. Phys 46 (1978) 499.ADSMathSciNetCrossRefGoogle Scholar
  94. [94]
    R. Baier, A.H. Mueller, D. Schiff and D.T. Son, ‘Bottom upthermalization in heavy ion collisions, Phys. Lett. B 502 (2001) 51 [hep-ph/0009237] [INSPIRE].
  95. [95]
    P. Glorioso and D.T. Son, Effective field theory of magnetohydrodynamics from generalized global symmetries, arXiv:1811.04879 [INSPIRE].
  96. [96]
    J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  97. [97]
    N. Banerjee et al., Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  98. [98]
    D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  99. [99]
    M. Haack, D. Sarkar and A. Yarom, Probing anomalous driving, JHEP 04 (2019) 034 [arXiv:1812.08210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  100. [100]
    M.F. Wondrak, M. Kaminski, P. Nicolini and M. Bleicher, AdS/CFT far from equilibrium in a Vaidya setup, J. Phys. Conf. Ser. 942 (2017) 012020 [arXiv:1711.08835] [INSPIRE].
  101. [101]
    T. Ishii, Notes on frequencies and timescales in nonequilibrium Greens functions, arXiv:1605.08387 [INSPIRE].
  102. [102]
    S. Banerjee et al., Time-dependence of the holographic spectral function: diverse routes to thermalisation, JHEP 08 (2016) 048 [arXiv:1603.06935] [INSPIRE].ADSMathSciNetGoogle Scholar
  103. [103]
    M. Wondrak, M. Kaminski and M. Bleicher, Shear transport far from equilibrium, to appear.Google Scholar
  104. [104]
    A. Mazeliauskas and J. Berges, Prescaling and far-from-equilibrium hydrodynamics in the quark-gluon plasma, Phys. Rev. Lett. 122 (2019) 122301 [arXiv:1810.10554] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    P. Romatschke, Relativistic fluid dynamics far from local equilibrium, Phys. Rev. Lett. 120 (2018) 012301 [arXiv:1704.08699] [INSPIRE].
  106. [106]
    C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  107. [107]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  108. [108]
    M. Attems et al., Holographic collisions across a phase transition, Phys. Rev. Lett. 121 (2018) 261601 [arXiv:1807.05175] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
  110. [110]
    S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].
  111. [111]
    G.T. Horowitz, N. Iqbal and J.E. Santos, Simple holographic model of nonlinear conductivity, Phys. Rev. D 88 (2013) 126002 [arXiv:1309.5088] [INSPIRE].
  112. [112]
    A. Poole, K. Skenderis and M. Taylor, (A)dS 4 in Bondi gauge, Class. Quant. Grav. 36 (2019) 095005 [arXiv:1812.05369] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of AlabamaTuscaloosaU.S.A.

Personalised recommendations