Journal of High Energy Physics

, 2019:69 | Cite as

CP violating effects in coherent elastic neutrino-nucleus scattering processes

  • D. Aristizabal Sierra
  • V. De RomeriEmail author
  • N. Rojas
Open Access
Regular Article - Theoretical Physics


The presence of new neutrino-quark interactions can enhance, deplete or distort the coherent elastic neutrino-nucleus scattering (CEνNS) event rate. The new interactions may involve CP violating phases that can potentially affect these features. Assuming light vector mediators, we study the effects of CP violation on the CEνNS process in the COHERENT sodium-iodine, liquid argon and germanium detectors. We identify a region in parameter space for which the event rate always involves a dip and another one for which this is never the case. We show that the presence of a dip in the event rate spectrum can be used to constraint CP violating effects, in such a way that the larger the detector volume the tighter the constraints. Furthermore, it allows the reconstruction of the effective coupling responsible for the signal with an uncertainty determined by recoil energy resolution. In the region where no dip is present, we find that CP violating parameters can mimic the Standard Model CEνNS prediction or spectra induced by real parameters. We point out that the interpretation of CEνNS data in terms of a light vector mediator should take into account possible CP violating effects. Finally, we stress that our results are qualitatively applicable for CEνNS induced by solar or reactor neutrinos. Thus, the CP violating effects discussed here and their consequences should be taken into account as well in the analysis of data from multi-ton dark matter detectors or experiments such as CONUS, ν-cleus or CONNIE.


Beyond Standard Model CP violation Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    COHERENT collaboration, Observation of coherent elastic neutrino-nucleus scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].
  2. [2]
    J. Hackenmüller et al., The CONUS experiment, talk given at the XV International Conference on Topics in Astroparticle and Underground Physics , July 24-28, Sudbury, Canada (2017).
  3. [3]
    CONNIE collaboration, The CONNIE experiment, J. Phys. Conf. Ser. 761 (2016) 012057 [arXiv:1608.01565] [INSPIRE].
  4. [4]
    R. Strauss et al., The ν-cleus experiment: a gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering, Eur. Phys. J. C 77 (2017) 506 [arXiv:1704.04320] [INSPIRE].
  5. [5]
    XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  6. [6]
    LUX-ZEPLIN collaboration, Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment, arXiv:1802.06039 [INSPIRE].
  7. [7]
    DARWIN collaboration, DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  8. [8]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].
  9. [9]
    B. Dutta and L.E. Strigari, Neutrino physics with dark matter detectors, arXiv:1901.08876 [INSPIRE].
  10. [10]
    R. Harnik, J. Kopp and P.A.N. Machado, Exploring ν signals in dark matter detectors, JCAP 07 (2012) 026 [arXiv:1202.6073] [INSPIRE].
  11. [11]
    D.G. Cerdeño et al., Physics from solar neutrinos in dark matter direct detection experiments, JHEP 05 (2016) 118 [Erratum ibid. 09 (2016) 048] [arXiv:1604.01025] [INSPIRE].
  12. [12]
    I.M. Shoemaker, COHERENT search strategy for beyond standard model neutrino interactions, Phys. Rev. D 95 (2017) 115028 [arXiv:1703.05774] [INSPIRE].
  13. [13]
    B. Dutta, S. Liao, L.E. Strigari and J.W. Walker, Non-standard interactions of solar neutrinos in dark matter experiments, Phys. Lett. B 773 (2017) 242 [arXiv:1705.00661] [INSPIRE].
  14. [14]
    D. Aristizabal Sierra, N. Rojas and M.H.G. Tytgat, Neutrino non-standard interactions and dark matter searches with multi-ton scale detectors, JHEP 03 (2018) 197 [arXiv:1712.09667] [INSPIRE].
  15. [15]
    M.C. Gonzalez-Garcia, M. Maltoni, Y.F. Perez-Gonzalez and R. Zukanovich Funchal, Neutrino Discovery Limit of Dark Matter Direct Detection Experiments in the Presence of Non-Standard Interactions, JHEP 07 (2018) 019 [arXiv:1803.03650] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Billard, J. Johnston and B.J. Kavanagh, Prospects for exploring new physics in coherent elastic neutrino-nucleus scattering, JCAP 11 (2018) 016 [arXiv:1805.01798] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D.Z. Freedman, Coherent neutrino nucleus scattering as a probe of the weak neutral current, Phys. Rev. D 9 (1974) 1389 [INSPIRE].
  18. [18]
    D.Z. Freedman, D.N. Schramm and D.L. Tubbs, The weak neutral current and its effects in stellar collapse, Ann. Rev. Nucl. Part. Sci. 27 (1977) 167 [INSPIRE].
  19. [19]
    V.A. Bednyakov and D.V. Naumov, Coherency and incoherency in neutrino-nucleus elastic and inelastic scattering, Phys. Rev. D 98 (2018) 053004 [arXiv:1806.08768] [INSPIRE].
  20. [20]
    D. Aristizabal Sierra, J. Liao and D. Marfatia, Impact of form factor uncertainties on interpretations of coherent elastic neutrino-nucleus scattering data, JHEP 06 (2019) 141 [arXiv:1902.07398] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    COHERENT collaboration, COHERENT collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering, arXiv:1804.09459 [INSPIRE].
  22. [22]
    P. Coloma, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, COHERENT enlightenment of the neutrino dark side, Phys. Rev. D 96 (2017) 115007 [arXiv:1708.02899] [INSPIRE].
  23. [23]
    J. Liao and D. Marfatia, COHERENT constraints on nonstandard neutrino interactions, Phys. Lett. B 775 (2017) 54 [arXiv:1708.04255] [INSPIRE].
  24. [24]
    O.G. Miranda, G. Sanchez Garcia and O. Sanders, Coherent elastic neutrino-nucleus scattering as a precision test for the Standard Model and beyond: the COHERENT proposal case, Adv. High Energy Phys. 2019 (2019) 3902819 [arXiv:1902.09036] [INSPIRE].
  25. [25]
    Y. Farzan, M. Lindner, W. Rodejohann and X.-J. Xu, Probing neutrino coupling to a light scalar with coherent neutrino scattering, JHEP 05 (2018) 066 [arXiv:1802.05171] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    D.K. Papoulias and T.S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics, Phys. Rev. D 97 (2018) 033003 [arXiv:1711.09773] [INSPIRE].
  27. [27]
    O.G. Miranda, D.K. Papoulias, M. Tórtola and J.W.F. Valle, Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering, JHEP 07 (2019) 103 [arXiv:1905.03750] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    D. Aristizabal Sierra, V. De Romeri and N. Rojas, COHERENT analysis of neutrino generalized interactions, Phys. Rev. D 98 (2018) 075018 [arXiv:1806.07424] [INSPIRE].
  29. [29]
    J.B. Dent et al., Probing light mediators at ultralow threshold energies with coherent elastic neutrino-nucleus scattering, Phys. Rev. D 96 (2017) 095007 [arXiv:1612.06350] [INSPIRE].
  30. [30]
    K. Scholberg, Observation of coherent elestic neutrino-nucleus scattering, COFI seminar , September 12, Duke University, U.S.A. (2017).
  31. [31]
    Y. Farzan, A model for large non-standard interactions of neutrinos leading to the LMA-Dark solution, Phys. Lett. B 748 (2015) 311 [arXiv:1505.06906] [INSPIRE].
  32. [32]
    Y. Farzan and I.M. Shoemaker, Lepton flavor violating non-standard interactions via light mediators, JHEP 07 (2016) 033 [arXiv:1512.09147] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Y. Farzan and J. Heeck, Neutrinophilic nonstandard interactions, Phys. Rev. D 94 (2016) 053010 [arXiv:1607.07616] [INSPIRE].
  34. [34]
    M.B. Wise and Y. Zhang, Effective theory and simple completions for neutrino interactions, Phys. Rev. D 90 (2014) 053005 [arXiv:1404.4663] [INSPIRE].
  35. [35]
    A.G. Beda et al., Gemma experiment: the results of neutrino magnetic moment search, Phys. Part. Nucl. Lett. 10 (2013) 139.CrossRefGoogle Scholar
  36. [36]
    P. Bakhti and Y. Farzan, Constraining secret gauge interactions of neutrinos by meson decays, Phys. Rev. D 95 (2017) 095008 [arXiv:1702.04187] [INSPIRE].
  37. [37]
    P.B. Denton, Y. Farzan and I.M. Shoemaker, Testing large non-standard neutrino interactions with arbitrary mediator mass after COHERENT data, JHEP 07 (2018) 037 [arXiv:1804.03660] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P. Bakhti, Y. Farzan and M. Rajaee, Secret interactions of neutrinos with light gauge boson at the DUNE near detector, Phys. Rev. D 99 (2019) 055019 [arXiv:1810.04441] [INSPIRE].
  39. [39]
    CMS collaboration, Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, JHEP 04 (2015) 025 [arXiv:1412.6302] [INSPIRE].
  40. [40]
    ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 10 (2017) 182 [arXiv:1707.02424] [INSPIRE].
  41. [41]
    Particle Data Group collaboration, Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  42. [42]
    I. Angeli and K.P. Marinova, Table of experimental nuclear ground state charge radii: an update, Atom. Data Nucl. Data Tabl. 99 (2013) 69.ADSCrossRefGoogle Scholar
  43. [43]
    M. Centelles, X. Roca-Maza, X. Vinas and M. Warda, Nuclear symmetry energy probed by neutron skin thickness of nuclei, Phys. Rev. Lett. 102 (2009) 122502 [arXiv:0806.2886] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R.H. Helm, Inelastic and elastic scattering of 187-MeV electrons from selected even-even nuclei, Phys. Rev. 104 (1956) 1466 [INSPIRE].
  45. [45]
    M. Bauer, P. Foldenauer and J. Jaeckel, Hunting all the hidden photons, JHEP 07 (2018) 094 [arXiv:1803.05466] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    KLOE-2 collaboration, Limit on the production of a new vector boson in e + e U γ, Uπ + π with the KLOE experiment, Phys. Lett. B 757 (2016) 356 [arXiv:1603.06086] [INSPIRE].
  47. [47]
    BaBar collaboration, Search for a dark photon in e + e collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
  48. [48]
    G. Inguglia, Belle II studies of missing energy decays and searches for dark photon production, PoS(DIS2016)263 [arXiv:1607.02089] [INSPIRE].
  49. [49]
    SINDRUM collaboration, Search for the decay μ +e + e + e , Nucl. Phys. B 260 (1985) 1 [INSPIRE].
  50. [50]
    CLEO collaboration, Tau decays into three charged leptons and two neutrinos, Phys. Rev. Lett. 76 (1996) 2637 [INSPIRE].
  51. [51]
    LHCb collaboration, Search for dark photons produced in 13 TeV pp collisions, Phys. Rev. Lett. 120 (2018) 061801 [arXiv:1710.02867] [INSPIRE].
  52. [52]
    D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating dark photons with high-energy colliders, JHEP 02 (2015) 157 [arXiv:1412.0018] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino trident production: a powerful probe of new physics with neutrino beams, Phys. Rev. Lett. 113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].
  54. [54]
    S. Bilmis et al., Constraints on dark photon from neutrino-electron scattering experiments, Phys. Rev. D 92 (2015) 033009 [arXiv:1502.07763] [INSPIRE].
  55. [55]
    J.I. Collar, A.R.L. Kavner and C.M. Lewis, Response of CsI[Na] to nuclear recoils: impact on coherent elastic neutrino-nucleus scattering (CEνNS), Phys. Rev. D 100 (2019) 033003 [arXiv:1907.04828] [INSPIRE].
  56. [56]
    D.K. Papoulias, COHERENT constraints after the Chicago-3 quenching factor measurement, arXiv:1907.11644 [INSPIRE].
  57. [57]
    A.N. Khan and W. Rodejohann, New physics from COHERENT data with improved quenching factors, arXiv:1907.12444 [INSPIRE].
  58. [58]
    J.A. Grifols and E. Masso, Constraints on finite range baryonic and leptonic forces from stellar evolution, Phys. Lett. B 173 (1986) 237 [INSPIRE].
  59. [59]
    J.A. Grifols, E. Masso and S. Peris, Energy loss from the Sun and red giants: bounds on short range baryonic and leptonic forces, Mod. Phys. Lett. A 4 (1989) 311 [INSPIRE].
  60. [60]
    J.H. Chang, R. Essig and S.D. McDermott, Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion and an axion-like particle, JHEP 09 (2018) 051 [arXiv:1803.00993] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    J.H. Chang, R. Essig and S.D. McDermott, Revisiting supernova 1987A constraints on dark photons, JHEP 01 (2017) 107 [arXiv:1611.03864] [INSPIRE].ADSzbMATHGoogle Scholar
  62. [62]
    B. Müller, The status of multi-dimensional core-collapse supernova models, Publ. Astron. Soc. Austral. 33 (2016) e048 [arXiv:1608.03274] [INSPIRE].
  63. [63]
    E. Hardy and R. Lasenby, Stellar cooling bounds on new light particles: plasma mixing effects, JHEP 02 (2017) 033 [arXiv:1611.05852] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  64. [64]
    A.E. Nelson and J. Walsh, Short baseline neutrino oscillations and a new light gauge boson, Phys. Rev. D 77 (2008) 033001 [arXiv:0711.1363] [INSPIRE].
  65. [65]
    A.E. Nelson and J. Walsh, Chameleon vector bosons, Phys. Rev. D 77 (2008) 095006 [arXiv:0802.0762] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • D. Aristizabal Sierra
    • 1
    • 2
  • V. De Romeri
    • 3
    Email author
  • N. Rojas
    • 1
  1. 1.Universidad Técnica Federico Santa María, Departamento de FísicaValparaísoChile
  2. 2.IFPA, Dep. AGO, Université de LiègeLiège 1Belgium
  3. 3.AHEP Group, Instituto de Física Corpuscular, CSIC/Universitat de ValènciaPaternaSpain

Personalised recommendations