Journal of High Energy Physics

, 2019:50 | Cite as

Leptogenesis in Δ(27) with a universal texture zero

  • Fredrik Björkeroth
  • Ivo de Medeiros VarzielasEmail author
  • M. L. López-Ibáñez
  • Aurora Melis
  • Óscar Vives
Open Access
Regular Article - Theoretical Physics


We investigate the possibility of viable leptogenesis in an appealing Δ(27) model with a universal texture zero in the (1,1) entry. The model accommodates the mass spectrum, mixing and CP phases for both quarks and leptons and allows for grand unification. Flavoured Boltzmann equations for the lepton asymmetries are solved numerically, taking into account both N1 and N2 right-handed neutrino decays. The N1-dominated scenario is successful and the most natural option for the model, with M1 ∈ [109, 1012] GeV, and M1/M2 ∈ [0.002, 0.1], which constrains the parameter space of the underlying model and yields lower bounds on the respective Yukawa couplings. Viable leptogenesis is also possible in the N2-dominated scenario, with the asymmetry in the electron flavour protected from N1 washout by the texture zero. However, this occurs in a region of parameter space which has a stronger mass hierarchy M1/M2< 0.002, and M2 relatively close to M3, which is not a natural expectation of the Δ(27) model.


Beyond Standard Model GUT Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A.D. Sakharov, Violation of CP Invariance, C asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [Sov. Phys. Usp. 34 (1991) 392] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].
  2. [2]
    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36.Google Scholar
  3. [3]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].
  4. [4]
    A. Blum, C. Hagedorn and M. Lindner, Fermion masses and mixings from dihedral flavor symmetries with preserved subgroups, Phys. Rev. D 77 (2008) 076004 [arXiv:0709.3450] [INSPIRE].
  5. [5]
    C. Hagedorn and D. Meloni, D14A common origin of the Cabibbo angle and the lepton mixing angle θ 13l, Nucl. Phys. B 862 (2012) 691 [arXiv:1204.0715] [INSPIRE].
  6. [6]
    M. Holthausen and K.S. Lim, Quark and leptonic mixing patterns from the breakdown of a common discrete flavor symmetry, Phys. Rev. D 88 (2013) 033018 [arXiv:1306.4356] [INSPIRE].
  7. [7]
    H. Ishimori, S.F. King, H. Okada and M. Tanimoto, Quark mixing from Δ(6N 2) family symmetry, Phys. Lett. B 743 (2015) 172 [arXiv:1411.5845] [INSPIRE].
  8. [8]
    C.-Y. Yao and G.-J. Ding, Lepton and quark mixing patterns from finite flavor symmetries, Phys. Rev. D 92 (2015) 096010 [arXiv:1505.03798] [INSPIRE].
  9. [9]
    I. de Medeiros Varzielas, R.W. Rasmussen and J. Talbert, Bottom-up discrete symmetries for Cabibbo mixing, Int. J. Mod. Phys. A 32 (2017) 1750047 [arXiv:1605.03581] [INSPIRE].
  10. [10]
    J.-N. Lu and G.-J. Ding, Quark and lepton mixing patterns from a common discrete flavor symmetry with a generalized CP symmetry, Phys. Rev. D 98 (2018) 055011 [arXiv:1806.02301] [INSPIRE].
  11. [11]
    C. Hagedorn and J. König, Lepton and quark mixing from stepwise breaking of flavor and CP, arXiv:1811.07750 [INSPIRE].
  12. [12]
    J.-N. Lu and G.-J. Ding, Dihedral flavor group as the key to understand quark and lepton flavor mixing, JHEP 03 (2019) 056 [arXiv:1901.07414] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  13. [13]
    I. de Medeiros Varzielas, G.G. Ross and J. Talbert, A unified model of quarks and leptons with a universal texture zero, JHEP 03 (2018) 007 [arXiv:1710.01741] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    I. De Medeiros Varzielas, M.L. López-Ibáñez, A. Melis and O. Vives, Controlled flavor violation in the MSSM from a unified Δ(27) flavor symmetry, JHEP 09 (2018) 047 [arXiv:1807.00860] [INSPIRE].
  15. [15]
    S.F. King and G.G. Ross, Fermion masses and mixing angles from SU(3) family symmetry and unification, Phys. Lett. B 574 (2003) 239 [hep-ph/0307190] [INSPIRE].
  16. [16]
    G.G. Ross, L. Velasco-Sevilla and O. Vives, Spontaneous CP-violation and non-Abelian family symmetry in SUSY, Nucl. Phys. B 692 (2004) 50 [hep-ph/0401064] [INSPIRE].
  17. [17]
    I. de Medeiros Varzielas and G.G. Ross, SU(3) family symmetry and neutrino bi-tri-maximal mixing, Nucl. Phys. B 733 (2006) 31 [hep-ph/0507176] [INSPIRE].
  18. [18]
    I. de Medeiros Varzielas, Non-Abelian family symmetries in Pati-Salam unification, JHEP 01 (2012) 097 [arXiv:1111.3952] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    I. de Medeiros Varzielas and G.G. Ross, Discrete family symmetry, Higgs mediators and θ 13, JHEP 12 (2012) 041 [arXiv:1203.6636] [INSPIRE].
  20. [20]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete Δ(27) × SO(10) SUSY GUT, Phys. Rev. D 94 (2016) 016006 [arXiv:1512.00850] [INSPIRE].
  21. [21]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Leptogenesis in minimal predictive seesaw models, JHEP 10 (2015) 104 [arXiv:1505.05504] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    I. de Medeiros Varzielas, Δ(27) family symmetry and neutrino mixing, JHEP 08 (2015) 157 [arXiv:1507.00338] [INSPIRE].
  23. [23]
    R. Gatto, G. Sartori and M. Tonin, Weak selfmasses, Cabibbo angle, and broken SU(2) × SU(2), Phys. Lett. B 28 (1968) 128.Google Scholar
  24. [24]
    S. Antusch, S.F. King and A. Riotto, Flavour-dependent leptogenesis with sequential dominance, JCAP 11 (2006) 011 [hep-ph/0609038] [INSPIRE].
  25. [25]
    S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].
  26. [26]
    G.F. Giudice et al., Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].
  27. [27]
    W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0401240] [INSPIRE].
  28. [28]
    A. Abada et al., Flavor issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [INSPIRE].
  29. [29]
    P. Di Bari, Seesaw geometry and leptogenesis, Nucl. Phys. B 727 (2005) 318 [hep-ph/0502082] [INSPIRE].
  30. [30]
    P. Di Bari and A. Riotto, Testing SO(10)-inspired leptogenesis with low energy neutrino experiments, JCAP 04 (2011) 037 [arXiv:1012.2343] [INSPIRE].
  31. [31]
    P. Di Bari and L. Marzola, SO(10)-inspired solution to the problem of the initial conditions in leptogenesis, Nucl. Phys. B 877 (2013) 719 [arXiv:1308.1107] [INSPIRE].
  32. [32]
    P. Di Bari, L. Marzola and M. Re Fiorentin, Decrypting SO(10)-inspired leptogenesis, Nucl. Phys. B 893 (2015) 122 [arXiv:1411.5478] [INSPIRE].
  33. [33]
    P. Di Bari, S. King and M. Re Fiorentin, Strong thermal leptogenesis and the absolute neutrino mass scale, JCAP 03 (2014) 050 [arXiv:1401.6185] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  34. [34]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Leptogenesis in a Δ(27) × SO(10) SUSY GUT, JHEP 01 (2017) 077 [arXiv:1609.05837] [INSPIRE].
  35. [35]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-bang nucleosynthesis and gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].
  36. [36]
    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].
  37. [37]
    J. Pradler and F.D. Steffen, Thermal gravitino production and collider tests of leptogenesis, Phys. Rev. D 75 (2007) 023509 [hep-ph/0608344] [INSPIRE].
  38. [38]
    D. Das, M.L. López-Ibáñez, M.J. Pérez and O. Vives, Effective theories of flavor and the nonuniversal MSSM, Phys. Rev. D 95 (2017) 035001 [arXiv:1607.06827] [INSPIRE].
  39. [39]
    M.L. López-Ibáñez, A. Melis, M.J. Pérez and O. Vives, Slepton non-universality in the flavor-effective MSSM, JHEP 11 (2017) 162 [Erratum ibid. 04 (2018) 015] [arXiv:1710.02593] [INSPIRE].
  40. [40]
    M. L. López-Ibáñez, A. Melis, D. Meloni and Ó. Vives, Lepton flavor violation and neutrino masses from A 5 and CP in the non-universal MSSM, JHEP 06 (2019) 047 [arXiv:1901.04526].
  41. [41]
    R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [INSPIRE].
  42. [42]
    E. Nardi, Y. Nir, E. Roulet and J. Racker, The Importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].
  43. [43]
    S. Antusch, P. Di Bari, D.A. Jones and S.F. King, A fuller flavour treatment of N 2 -dominated leptogenesis, Nucl. Phys. B 856 (2012) 180 [arXiv:1003.5132] [INSPIRE].
  44. [44]
    O. Vives, Flavor dependence of CP asymmetries and thermal leptogenesis with strong right-handed neutrino mass hierarchy, Phys. Rev. D 73 (2006) 073006 [hep-ph/0512160] [INSPIRE].
  45. [45]
    P. Di Bari and S.F. King, Successful N 2 leptogenesis with flavour coupling effects in realistic unified models, JCAP 10 (2015) 008 [arXiv:1507.06431] [INSPIRE].
  46. [46]
    E. Bertuzzo, P. Di Bari and L. Marzola, The problem of the initial conditions in flavoured leptogenesis and the tauon N 2 -dominated scenario, Nucl. Phys. B 849 (2011) 521 [arXiv:1007.1641] [INSPIRE].
  47. [47]
    S. Blanchet, P. Di Bari, D.A. Jones and L. Marzola, Leptogenesis with heavy neutrino flavours: from density matrix to Boltzmann equations, JCAP 01 (2013) 041 [arXiv:1112.4528] [INSPIRE].
  48. [48]
    F.J. de Anda, S.F. King and E. Perdomo, SO(10) × S 4 grand unified theory of flavour and leptogenesis, JHEP 12 (2017) 075 [Erratum ibid. 04 (2019) 069] [arXiv:1710.03229] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.INFN, Laboratori Nazionali di FrascatiFrascatiItaly
  2. 2.CFTP, Departamento de Física, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  3. 3.Departament de Física TèoricaUniversitat de València & IFIC, Universitat de València & CSICBurjassotSpain

Personalised recommendations