Advertisement

Journal of High Energy Physics

, 2019:47 | Cite as

Portraying double Higgs at the Large Hadron Collider

  • Jeong Han Kim
  • Minho Kim
  • Kyoungchul Kong
  • Konstantin T. Matchev
  • Myeonghun ParkEmail author
Open Access
Regular Article - Theoretical Physics
  • 3 Downloads

Abstract

We examine the discovery potential for double Higgs production at the high luminosity LHC in the final state with two b-tagged jets, two leptons and missing transverse momentum. Although this dilepton final state has been considered a difficult channel due to the large backgrounds, we argue that it is possible to obtain sizable signal significance, by adopting a deep learning framework making full use of the relevant kinematics along with the jet images from the Higgs decay. For the relevant number of signal events we obtain a substantial increase in signal sensitivity over existing analyses. We discuss relative improvements at each stage and the correlations among the different input variables for the neutral network. The proposed method can be easily generalized to the semi-leptonic channel of double Higgs production, as well as to other processes with similar final states.

Keywords

Beyond Standard Model Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    ATLAS, CMS collaboration, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  4. [4]
    ATLAS collaboration, Study of the double Higgs production channel H(→ b \( \overline{b} \))H(→ γγ) with the ATLAS experiment at the HL-LHC, ATL-PHYS-PUB-2017-001 (2017).
  5. [5]
    ATLAS collaboration, Projected sensitivity to non-resonant Higgs boson pair production in the b \( \overline{b} \) b \( \overline{b} \) final state using proton-proton collisions at HL-LHC with the ATLAS detector, ATL-PHYS-PUB-2016-024 (2016).
  6. [6]
    J.H. Kim, Y. Sakaki and M. Son, Combined analysis of double Higgs production via gluon fusion at the HL-LHC in the effective field theory approach, Phys. Rev. D 98 (2018) 015016 [arXiv:1801.06093] [INSPIRE].
  7. [7]
    CMS collaboration, Combination of searches for Higgs boson pair production in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 122 (2019) 121803 [arXiv:1811.09689] [INSPIRE].
  8. [8]
    CMS collaboration, Higgs pair production at the High Luminosity LHC, CMS-PAS-FTR-15-002 (2015).
  9. [9]
    CMS Collaboration, Projected performance of Higgs analyses at the HL-LHC for ECFA 2016, CMS-PAS-FTR-16-002 (2017).
  10. [10]
    J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].
  11. [11]
    CMS collaboration, Search for resonant and nonresonant Higgs boson pair production in the b \( \overline{b} \) ℓνℓν final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 01 (2018) 054 [arXiv:1708.04188] [INSPIRE].
  12. [12]
    HL/HE WG2 group collaboration, Higgs Physics at the HL-LHC and HE-LHC, arXiv:1902.00134 [INSPIRE].
  13. [13]
    ATLAS collaboration, Measurement prospects of the pair production and self-coupling of the Higgs boson with the ATLAS experiment at the HL-LHC, ATL-PHYS-PUB-2018-053 (2018).
  14. [14]
    ATLAS collaboration, Search for pair production of Higgs bosons in the b \( \overline{b} \) b \( \overline{b} \) final state using proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 01 (2019) 030 [arXiv:1804.06174] [INSPIRE].
  15. [15]
    CMS Collaboration, Search for non-resonant Higgs pair-production in the b \( \overline{b} \) b \( \overline{b} \) final state with the CMS detector, CMS-PAS-HIG-17-017 (2018).
  16. [16]
    D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard model Higgs boson pair production in the (b \( \overline{b} \)) (b \( \overline{b} \)) final state, JHEP 08 (2014) 030 [arXiv:1404.7139] [INSPIRE].
  17. [17]
    D. Wardrope et al., Non-resonant Higgs-pair production in the b \( \overline{b} \) b \( \overline{b} \) final state at the LHC, Eur. Phys. J. C 75 (2015) 219 [arXiv:1410.2794] [INSPIRE].
  18. [18]
    J.K. Behr et al., Boosting Higgs pair production in the b \( \overline{b} \) b \( \overline{b} \) final state with multivariate techniques, Eur. Phys. J. C 76 (2016) 386 [arXiv:1512.08928] [INSPIRE].
  19. [19]
    CMS collaboration, Search for Higgs boson pair production in the γγb \( \overline{b} \) final state in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 788 (2019) 7 [arXiv:1806.00408] [INSPIRE].
  20. [20]
    ATLAS collaboration, Search for Higgs boson pair production in the γγb \( \overline{b} \) final state with 13 TeV pp collision data collected by the ATLAS experiment, JHEP 11 (2018) 040 [arXiv:1807.04873] [INSPIRE].
  21. [21]
    CMS collaboration, Higgs pair production at the High Luminosity LHC, CMS-PAS-FTR-15-002 (2015).
  22. [22]
    ATLAS collaboration, Prospects for measuring Higgs pair production in the channel H(→ γγ)H(→ b \( \overline{b} \)) using the ATLAS detector at the HL-LHC, ATL-PHYS-PUB-2014-019 (2014).
  23. [23]
    F. Kling, T. Plehn and P. Schichtel, Maximizing the significance in Higgs boson pair analyses, Phys. Rev. D 95 (2017) 035026 [arXiv:1607.07441] [INSPIRE].
  24. [24]
    U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].
  25. [25]
    P. Huang, A. Joglekar, B. Li and C.E.M. Wagner, Probing the electroweak phase transition at the LHC, Phys. Rev. D 93 (2016) 055049 [arXiv:1512.00068] [INSPIRE].
  26. [26]
    A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].
  27. [27]
    Q.-H. Cao, B. Yan, D.-M. Zhang and H. Zhang, Resolving the degeneracy in single Higgs production with Higgs pair production, Phys. Lett. B 752 (2016) 285 [arXiv:1508.06512] [INSPIRE].
  28. [28]
    Q.-H. Cao et al., Double Higgs production at the 14 TeV LHC and a 100 TeV pp collider, Phys. Rev. D 96 (2017) 095031 [arXiv:1611.09336] [INSPIRE].
  29. [29]
    A. Alves, T. Ghosh and K. Sinha, Can we discover double Higgs production at the LHC?, Phys. Rev. D 96 (2017) 035022 [arXiv:1704.07395] [INSPIRE].
  30. [30]
    V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-pair production and measurement of the triscalar coupling at LHC(8,14), Phys. Lett. B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. Chang et al., Higgs-boson-pair production H(→ b \( \overline{b} \))H(→ γγ) from gluon fusion at the HL-LHC and HL-100 TeV hadron collider, arXiv:1804.07130 [INSPIRE].
  32. [32]
    ATLAS collaboration, Search for resonant and non-resonant Higgs boson pair production in the b \( \overline{b} \) τ + τ decay channel in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. Lett. 121 (2018) 191801 [Erratum ibid. 122 (2019) 089901] [arXiv:1808.00336] [INSPIRE].
  33. [33]
    CMS collaboration, Search for Higgs boson pair production in events with two bottom quarks and two τ leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 778 (2018) 101 [arXiv:1707.02909] [INSPIRE].
  34. [34]
    U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: a comparative analysis, Phys. Rev. D 68 (2003) 033001 [hep-ph/0304015] [INSPIRE].
  35. [35]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production in the D=6 extension of the SM,JHEP 04(2015) 167 [arXiv:1410.3471] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    ATLAS collaboration, Search for Higgs boson pair production in the b \( \overline{b} \) WW decay mode at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 04(2019) 092 [arXiv:1811.04671] [INSPIRE].
  38. [38]
    CMS Collaboration, Search for resonant and non-resonant Higgs boson pair production in the bblνlν final state at \( \sqrt{s} \) = 13 TeV, CMS-PAS-HIG-17-006 (2017).
  39. [39]
    J.H. Kim, K. Kong, K.T. Matchev and M. Park, Probing the triple Higgs self-interaction at the Large Hadron Collider, Phys. Rev. Lett. 122 (2019) 091801 [arXiv:1807.11498] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the b \( \overline{b} \) W+Wchannel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].
  41. [41]
    T. Huang et al., Resonant di-Higgs boson production in the b \( \overline{b} \) WW channel: probing the electroweak phase transition at the LHC, Phys. Rev. D 96 (2017) 035007 [arXiv:1701.04442] [INSPIRE].
  42. [42]
    ATLAS collaboration, Search for Higgs boson pair production in the W W (∗) W W (∗) decay channel using ATLAS data recorded at \( \sqrt{s} \) = 13 TeV, JHEP 05 (2019) 124 [arXiv:1811.11028] [INSPIRE].
  43. [43]
    A. Adhikary et al., Revisiting the non-resonant Higgs pair production at the HL-LHC, JHEP 07 (2018) 116 [arXiv:1712.05346] [INSPIRE].
  44. [44]
    B. Bhattacherjee, S. Mukherjee and R. Sengupta, Discrimination between prompt and long-lived particles using convolutional neural network, arXiv:1904.04811 [INSPIRE].
  45. [45]
    J. Gallicchio and M.D. Schwartz, Seeing in color: jet superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J. Gallicchio et al., Multivariate discrimination and the Higgs + W/Z search, JHEP 04 (2011) 069 [arXiv:1010.3698] [INSPIRE].
  47. [47]
    A. Hook, M. Jankowiak and J.G. Wacker, Jet dipolarity: top tagging with color flow, JHEP 04 (2012) 007 [arXiv:1102.1012] [INSPIRE].
  48. [48]
    J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-images: computer vision inspired techniques for jet tagging, JHEP 02 (2015) 118 [arXiv:1407.5675] [INSPIRE].
  49. [49]
    L. de Oliveira et al., Jet-imagesDeep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].
  50. [50]
    J. Lin, M. Freytsis, I. Moult and B. Nachman, Boosting Hb \( \overline{b} \) with machine learning, JHEP 10 (2018) 101 [arXiv:1807.10768] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    L. de Oliveira, M. Paganini and B. Nachman, Learning particle physics by example: location-aware generative adversarial networks for physics synthesis, Comput. Softw. Big Sci. 1 (2017) 4 [arXiv:1701.05927] [INSPIRE].
  52. [52]
    P. Baldi, P. Sadowski and D. Whiteson, Searching for exotic particles in high-energy physics with deep learning, Nature Commun. 5 (2014) 4308 [arXiv:1402.4735] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P.T. Komiske, E.M. Metodiev and M.D. Schwartz, Deep learning in color: towards automated quark/gluon jet discrimination, JHEP 01 (2017) 110 [arXiv:1612.01551] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    G. Kasieczka, T. Plehn, M. Russell and T. Schell, Deep-learning top taggers or the end of QCD?, JHEP 05 (2017) 006 [arXiv:1701.08784] [INSPIRE].
  55. [55]
    DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  56. [56]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
  57. [57]
    ATLAS collaboration, Expected performance of the ATLAS detector at the High-Luminosity LHC, ATL-PHYS-PUB-2019-005 (2019).
  58. [58]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    ATLAS collaboration, Performance of missing transverse momentum reconstruction with the ATLAS detector using proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 78 (2018) 903 [arXiv:1802.08168] [INSPIRE].
  60. [60]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
  61. [61]
    NNPDF collaboration, Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  62. [62]
    J. Grigo, K. Melnikov and M. Steinhauser, Virtual corrections to Higgs boson pair production in the large top quark mass limit, Nucl. Phys. B 888 (2014) 17 [arXiv:1408.2422] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(\( {\alpha}_S^4 \)), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].
  64. [64]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
  65. [65]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].
  66. [66]
    D. de Florian, M. Der and I. Fabre, QCDQED NNLO corrections to Drell-Yan production, Phys. Rev. D 98 (2018) 094008 [arXiv:1805.12214] [INSPIRE].
  67. [67]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  68. [68]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  69. [69]
    T. Han, I.-W. Kim and J. Song, Kinematic cusps: determining the missing particle mass at colliders, Phys. Lett. B 693 (2010) 575 [arXiv:0906.5009] [INSPIRE].
  70. [70]
    T. Han, I.-W. Kim and J. Song, Kinematic cusps with two missing particles II: cascade decay topology, Phys. Rev. D 87 (2013) 035004 [arXiv:1206.5641] [INSPIRE].
  71. [71]
    T. Han, I.-W. Kim and J. Song, Kinematic cusps with two missing particles I: antler decay topology, Phys. Rev. D 87 (2013) 035003 [arXiv:1206.5633] [INSPIRE].
  72. [72]
    W.S. Cho, D. Kim, K.T. Matchev and M. Park, Probing resonance decays to two visible and multiple invisible particles, Phys. Rev. Lett. 112 (2014) 211801 [arXiv:1206.1546] [INSPIRE].
  73. [73]
    P. Konar, K. Kong and K.T. Matchev, \( \sqrt{\hat{s}}\min \) : a global inclusive variable for determining the mass scale of new physics in events with missing energy at hadron colliders, JHEP 03 (2009) 085 [arXiv:0812.1042] [INSPIRE].
  74. [74]
    P. Konar, K. Kong, K.T. Matchev and M. Park, RECO level \( \sqrt{s}\min \) and subsystem \( \sqrt{s}\min \) : improved global inclusive variables for measuring the new physics mass scale in ET events at hadron colliders, JHEP 06 (2011) 041 [arXiv:1006.0653] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    M. Burns, K. Kong, K.T. Matchev and M. Park, Using subsystem MT2 for complete mass determinations in decay chains with missing energy at hadron colliders, JHEP 03 (2009) 143 [arXiv:0810.5576] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].
  77. [77]
    A.J. Barr et al., Guide to transverse projections and mass-constraining variables, Phys. Rev. D 84 (2011) 095031 [arXiv:1105.2977] [INSPIRE].
  78. [78]
    D. Kim, K.T. Matchev, F. Moortgat and L. Pape, Testing invisible momentum ansatze in missing energy events at the LHC, JHEP 08 (2017) 102 [arXiv:1703.06887] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    W.S. Cho et al., On-shell constrained M 2 variables with applications to mass measurements and topology disambiguation, JHEP 08 (2014) 070 [arXiv:1401.1449] [INSPIRE].
  80. [80]
    P. Konar, K. Kong, K.T. Matchev and M. Park, Superpartner mass measurement technique using 1D orthogonal decompositions of the Cambridge transverse mass variable M T2, Phys. Rev. Lett. 105 (2010) 051802 [arXiv:0910.3679] [INSPIRE].
  81. [81]
    P. Konar, K. Kong, K.T. Matchev and M. Park, Dark matter particle spectroscopy at the LHC: generalizing M T2 to asymmetric event topologies, JHEP 04 (2010) 086 [arXiv:0911.4126] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  82. [82]
    P. Baringer, K. Kong, M. McCaskey and D. Noonan, Revisiting Combinatorial Ambiguities at Hadron Colliders with M T2, JHEP 10 (2011) 101 [arXiv:1109.1563] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    D. Kim and K. Kong, Kinematic discrimination of tW and t \( \overline{t} \) productions using initial state radiation, Phys. Lett. B 751 (2015) 512 [arXiv:1503.03872] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    D. Goncalves, K. Kong and J.H. Kim, Probing the top-Higgs Yukawa CP structure in dileptonic tth with M 2 -assisted reconstruction, JHEP 06 (2018) 079 [arXiv:1804.05874] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    D. Debnath et al., Resolving combinatorial ambiguities in dilepton t \( \overline{t} \) event topologies with constrained M 2 variables, Phys. Rev. D 96 (2017) 076005 [arXiv:1706.04995] [INSPIRE].
  86. [86]
    F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color flow decomposition of QCD amplitudes, Phys. Rev. D 67 (2003) 014026 [hep-ph/0209271] [INSPIRE].
  87. [87]
    ATLAS collaboration, Measurement of colour flow using jet-pull observables in t \( \overline{t} \) events with the ATLAS experiment at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 78 (2018) 847 [arXiv:1805.02935] [INSPIRE].
  88. [88]
    A. Krizhevsky, I. Sutskever and G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in neural information processing systems 25, F. Pereira et al. eds., Curran Associates Inc., U.S.A. (2012).Google Scholar
  89. [89]
    Y. Lecun, Y. Bengio and G. Hinton, Deep learning, Nature 521 (2015) 436.ADSCrossRefGoogle Scholar
  90. [90]
    R.D. Field, Y. Kanev, M. Tayebnejad and P.A. Griffin, Using neural networks to enhance the Higgs boson signal at hadron colliders, Phys. Rev. D 53 (1996) 2296 [INSPIRE].
  91. [91]
    R.D. Field, Y. Kanev and M. Tayebnejad, A Topological analysis of the top quark signal and background at hadron colliders, Phys. Rev. D 55 (1997) 5685 [INSPIRE].ADSGoogle Scholar
  92. [92]
    R. Field, Genetic algorithms and neural networks as tools in particle physics, talk given at the Tevatron University, Fermilab, May 21 (1998).Google Scholar
  93. [93]
    P. Baldi et al., Jet substructure classification in high-energy physics with deep neural networks, Phys. Rev. D 93 (2016) 094034 [arXiv:1603.09349] [INSPIRE].
  94. [94]
    CMS collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus and MET, CMS-PAS-PFT-09-001 (2009).
  95. [95]
    T.G. Dietterich, Ensemble methods in machine learning, in Multiple classifier systems, N.C. Oza et al. eds., Springer, Berlin Germany (2000).Google Scholar
  96. [96]
    T. Majtner, S. Yildirim-Yayilgan and J.Y. Hardeberg, Combining deep learning and hand-crafted features for skin lesion classification, talk given at the Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA 2016), December 12–15, Oulu, Finland (2016).Google Scholar
  97. [97]
    E. Park, X. Han, T.L. Berg and A.C. Berg, Combining multiple sources of knowledge in deep cnns for action recognition, talk given at the EEE Winter Conference on Applications of Computer Vision (WACV 2016), March 7–9, Lake Placid, U.S.A. (2016).Google Scholar
  98. [98]
    K. He, X. Zhang, S. Ren and J. Sun, Delving deep into rectifiers: surpassing human-level performance on imagenet classification, arXiv:1502.01852 [INSPIRE].
  99. [99]
    X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, J. Mach. Learn. Res.Proc. Track 9 (2010) 249.Google Scholar
  100. [100]
    A.M. Saxe, J.L. McClelland and S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear neural networks, arXiv:1312.6120.
  101. [101]
    S. Ioffe and C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, arXiv:1502.03167 [INSPIRE].
  102. [102]
    X. Glorot, A. Bordes and Y. Bengio, Deep sparse rectifier neural networks, in the proceedings of the 14th International Conference on Artificial Intelligence and Statisitics (AISTATS 2011), April 11–13, Ft. Lauerdale, U.S.A. (2011).Google Scholar
  103. [103]
    D. Yu et al., An introduction to computational networks and the computational network toolkit, technical report (2014).Google Scholar
  104. [104]
    D.P. Kingma and J. Ba, Adam: a method for stochastic optimization, arXiv:1412.6980 [INSPIRE].
  105. [105]
    A. Hocker et al., TMVAToolkit for multivariate data analysis, physics/0703039 [INSPIRE].
  106. [106]
    D. Bertolini, P. Harris, M. Low and N. Tran, Pileup per particle identification, JHEP 10 (2014) 059 [arXiv:1407.6013] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].
  108. [108]
    S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP 10 (2016) 107 [arXiv:1608.04798] [INSPIRE].
  109. [109]
    ATLAS collaboration, Combination of searches for Higgs boson pairs in pp collisions at 13 TeV with the ATLAS experiment, ATLAS-CONF-2018-043 (2018).
  110. [110]
    J. Duchi, E. Hazan and Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res. 12 (2011) 2121.MathSciNetzbMATHGoogle Scholar
  111. [111]
    T. Tieleman and G. Hinton, Lecture 6.5rmsprop, coursera: neural networks for machine learning, technical report (2012).Google Scholar
  112. [112]
    R. Ge, F. Huang, C. Jin and Y. Yuan, Escaping from saddle pointsonline stochastic gradient for tensor decomposition, arXiv:1503.02101.
  113. [113]
    D. Masters and C. Luschi, Revisiting small batch training for deep neural networks, arXiv:1804.07612.
  114. [114]
    N. Srivastava et al., Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (2014) 1929.MathSciNetzbMATHGoogle Scholar
  115. [115]
    A. Krizhevsky, I. Sutskever and G.E. Hinton, Imagenet classification with deep convolutional neural networks, Neural Inf. Proc. Syst. 25 (2012).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of KansasLawrenceU.S.A.
  2. 2.Department of Physics, POSTECHPohangKorea
  3. 3.Institute of Convergence Fundamental Studies and School of Liberal ArtsSeoultechSeoulKorea
  4. 4.Institute for Fundamental Theory, Physics DepartmentUniversity of FloridaGainesvilleU.S.A.

Personalised recommendations