Journal of High Energy Physics

, 2019:45 | Cite as

Predictions for energy correlators probing substructure of groomed heavy quark jets

  • Christopher LeeEmail author
  • Prashant Shrivastava
  • Varun Vaidya
Open Access
Regular Article - Theoretical Physics


We develop an effective field theory (EFT) framework to perform an analytic calculation for energy correlator observables computed on groomed heavy-quark jets. A soft-drop grooming algorithm is applied to a jet initiated by a massive quark to minimize soft contamination effects such as pile-up and multi-parton interactions. We specifically consider the two-particle energy correlator as an initial application of this EFT framework to compute heavy quark jet substructure. We find that there are different regimes for the event shapes, depending on the size of the measured correlator observable, that require the use of different EFT formulations, in which the quark mass and grooming parameters may be relevant or not. We use the EFT to resum large logarithms in the energy correlator observable in terms of the momentum of a reconstructed heavy hadron to NLL′ accuracy and subsequently match it to a full QCD \( \mathcal{O} \)(αs) cross section, which we also compute. We compare our predictions to simulations in Pythia for e+e collisions. We find a good agreement with partonic simulations, as well as hadronic ones with an appropriate shape function used to describe nonperturbative effects and the heavy quark hadron decay turned off. We also predict the scaling behavior for the leading nonperturbative power correction due to hadronization. Consequently, we can give a prediction for the energy correlator distribution at the level of the reconstructed heavy hadron. This work provides a general framework for the analysis of heavy quark jet substructure observables.


Jets QCD Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    CMS collaboration, Search for a Higgs boson in the decay channel HZZ (∗)q \( \overline{q} \) + in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 04 (2012) 036 [arXiv:1202.1416] [INSPIRE].
  2. [2]
    CMS collaboration, Search for a Standard Model-like Higgs boson decaying into WWlνq \( \overline{q}^{\prime } \) in pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-HIG-13-008 (2013) [INSPIRE].
  3. [3]
    ATLAS collaboration, Measurement of jet charge in dijet events from \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052003 [arXiv:1509.05190] [INSPIRE].
  4. [4]
    CMS collaboration, Search for BSM t \( \overline{t} \) Production in the Boosted All-Hadronic Final State, CMS-PAS-EXO-11-006 (2011) [INSPIRE].
  5. [5]
    ATLAS and CMS collaborations, Boosted top quark techniques and searches for t \( \overline{t} \) resonances at the LHC, J. Phys. Conf. Ser. 452 (2013) 012034 [INSPIRE].
  6. [6]
    ATLAS and CMS collaborations, Boosted Top Quarks, Top Pair Resonances and Top Partner Searches at the LHC, EPJ Web Conf. 60 (2013) 09003 [INSPIRE].
  7. [7]
    ATLAS collaboration, Performance of boosted top quark identification in 2012 ATLAS data, ATLAS-CONF-2013-084 (2013) [INSPIRE].
  8. [8]
    H.A. Andrews et al., Novel tools and observables for jet physics in heavy-ion collisions, arXiv:1808.03689 [INSPIRE].
  9. [9]
    J.D. Bjorken, Energy Loss of Energetic Partons in Quark-Gluon Plasma: Possible Extinction of High p T Jets in Hadron-Hadron Collisions, FERMILAB-PUB-82-059-THY (1982) [INSPIRE].
  10. [10]
    M. Gyulassy and M. Plumer, Jet Quenching in Dense Matter, Phys. Lett. B 243 (1990) 432 [INSPIRE].
  11. [11]
    X.-N. Wang and M. Gyulassy, Gluon shadowing and jet quenching in A + A collisions at \( \sqrt{s} \) = 200 GeV, Phys. Rev. Lett. 68(1992) 1480 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    ATLAS collaboration, Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions at \( \sqrt{{}^s\mathrm{NN}} \) = 2.76 TeV with the ATLAS Detector,Phys. Rev. Lett. 114 (2015) 072302 [arXiv:1411.2357] [INSPIRE].
  13. [13]
    CMS collaboration, Studies of jet quenching using isolated-photon + jet correlations in PbPb and pp collisions at \( \sqrt{{}^s\mathrm{NN}} \) = 2.76 TeV, Phys. Lett. B 718 (2013) 773 [arXiv:1205.0206] [INSPIRE].
  14. [14]
    CMS collaboration, Observation and studies of jet quenching in PbPb collisions at \( \sqrt{{}^s\mathrm{NN}} \) = 2.76 TeV, Phys. Rev. C 84 (2011) 024906 [arXiv:1102.1957] [INSPIRE].
  15. [15]
    ATLAS collaboration, Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at \( \sqrt{{}^s\mathrm{NN}} \) = 2.77 TeV with the ATLAS Detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303 [arXiv:1011.6182] [INSPIRE].
  16. [16]
    CMS collaboration, Measurement of jet fragmentation into charged particles in pp and PbPb collisions at \( \sqrt{{}^s\mathrm{NN}} \) = 2.76 TeV, JHEP 10 (2012) 087 [arXiv:1205.5872] [INSPIRE].
  17. [17]
    CMS collaboration, Modification of jet shapes in PbPb collisions at \( \sqrt{{}^s\mathrm{NN}} \) = 2.76 TeV, Phys. Lett. B 730 (2014) 243 [arXiv:1310.0878] [INSPIRE].
  18. [18]
    ATLAS collaboration, Measurement of inclusive jet charged-particle fragmentation functions in P b + P b collisions at \( \sqrt{{}^s\mathrm{NN}} \) = 2.76 TeV with the ATLAS detector, Phys. Lett. B 739 (2014) 320 [arXiv:1406.2979] [INSPIRE].
  19. [19]
    I. Feige, M.D. Schwartz, I.W. Stewart and J. Thaler, Precision Jet Substructure from Boosted Event Shapes, Phys. Rev. Lett. 109 (2012) 092001 [arXiv:1204.3898] [INSPIRE].
  20. [20]
    M. Field, G. Gur-Ari, D.A. Kosower, L. Mannelli and G. Perez, Three-Prong Distribution of Massive Narrow QCD Jets, Phys. Rev. D 87 (2013) 094013 [arXiv:1212.2106] [INSPIRE].
  21. [21]
    M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, Jet substructure with analytical methods, Eur. Phys. J. C 73 (2013) 2623 [arXiv:1307.0013] [INSPIRE].
  23. [23]
    A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (Mutual) Information about Quark/Gluon Discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Dasgupta, A. Powling and A. Siodmok, On jet substructure methods for signal jets, JHEP 08 (2015) 079 [arXiv:1503.01088] [INSPIRE].
  25. [25]
    H.T. Li and I. Vitev, Inverting the mass hierarchy of jet quenching effects with prompt b-jet substructure, Phys. Lett. B 793 (2019) 259 [arXiv:1801.00008] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J.R. Walsh and S. Zuberi, Factorization Constraints on Jet Substructure, arXiv:1110.5333 [INSPIRE].
  27. [27]
    A.J. Larkoski, I. Moult and D. Neill, Power Counting to Better Jet Observables, JHEP 12 (2014) 009 [arXiv:1409.6298] [INSPIRE].
  28. [28]
    A.J. Larkoski, I. Moult and D. Neill, Building a Better Boosted Top Tagger, Phys. Rev. D 91 (2015) 034035 [arXiv:1411.0665] [INSPIRE].
  29. [29]
    J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-Images: Computer Vision Inspired Techniques for Jet Tagging, JHEP 02 (2015) 118 [arXiv:1407.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-imagesdeep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].
  31. [31]
    L.G. Almeida, M. Backović, M. Cliche, S.J. Lee and M. Perelstein, Playing Tag with ANN: Boosted Top Identification with Pattern Recognition, JHEP 07 (2015) 086 [arXiv:1501.05968] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    P. Baldi, K. Bauer, C. Eng, P. Sadowski and D. Whiteson, Jet Substructure Classification in High-Energy Physics with Deep Neural Networks, Phys. Rev. D 93 (2016) 094034 [arXiv:1603.09349] [INSPIRE].
  33. [33]
    D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban and D. Whiteson, Jet Flavor Classification in High-Energy Physics with Deep Neural Networks, Phys. Rev. D 94 (2016) 112002 [arXiv:1607.08633] [INSPIRE].
  34. [34]
    J.S. Conway, R. Bhaskar, R.D. Erbacher and J. Pilot, Identification of High-Momentum Top Quarks, Higgs Bosons and W and Z Bosons Using Boosted Event Shapes, Phys. Rev. D 94 (2016) 094027 [arXiv:1606.06859] [INSPIRE].
  35. [35]
    J. Barnard, E.N. Dawe, M.J. Dolan and N. Rajcic, Parton Shower Uncertainties in Jet Substructure Analyses with Deep Neural Networks, Phys. Rev. D 95 (2017) 014018 [arXiv:1609.00607] [INSPIRE].
  36. [36]
    A.J. Larkoski, I. Moult and B. Nachman, Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, arXiv:1709.04464 [INSPIRE].
  37. [37]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A.J. Larkoski, I. Moult and D. Neill, Analytic Boosted Boson Discrimination at the Large Hadron Collider, arXiv:1708.06760 [INSPIRE].
  39. [39]
    A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Extracting a Short Distance Top Mass with Light Grooming, arXiv:1708.02586 [INSPIRE].
  40. [40]
    S. Marzani, L. Schunk and G. Soyez, A study of jet mass distributions with grooming, JHEP 07 (2017) 132 [arXiv:1704.02210] [INSPIRE].
  41. [41]
    M. Dasgupta, A. Powling, L. Schunk and G. Soyez, Improved jet substructure methods: Y-splitter and variants with grooming, JHEP 12 (2016) 079 [arXiv:1609.07149] [INSPIRE].
  42. [42]
    C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Precision physics with pile-up insensitive observables, arXiv:1603.06375 [INSPIRE].
  43. [43]
    C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A.J. Larkoski, S. Marzani and J. Thaler, Sudakov Safety in Perturbative QCD, Phys. Rev. D 91 (2015) 111501 [arXiv:1502.01719] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Dasgupta, L. Schunk and G. Soyez, Jet shapes for boosted jet two-prong decays from first-principles, JHEP 04 (2016) 166 [arXiv:1512.00516] [INSPIRE].
  46. [46]
    Y.-T. Chien and I. Vitev, Jet Shape Resummation Using Soft-Collinear Effective Theory, JHEP 12 (2014) 061 [arXiv:1405.4293] [INSPIRE].
  47. [47]
    Y.L. Dokshitzer and D.E. Kharzeev, Heavy quark colorimetry of QCD matter, Phys. Lett. B 519 (2001) 199 [hep-ph/0106202] [INSPIRE].
  48. [48]
    A.D. Frawley, T. Ullrich and R. Vogt, Heavy flavor in heavy-ion collisions at RHIC and RHIC II, Phys. Rept. 462 (2008) 125 [arXiv:0806.1013] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    PHENIX collaboration, An Upgrade Proposal from the PHENIX collaboration, arXiv:1501.06197 [INSPIRE].
  50. [50]
    S.P. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: Top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE].
  51. [51]
    S.P. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top Jets in the Peak Region: Factorization Analysis with NLL Resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711.2079] [INSPIRE].
  52. [52]
    Y. Makris and V. Vaidya, Transverse Momentum Spectra at Threshold for Groomed Heavy Quark Jets, JHEP 10 (2018) 019 [arXiv:1807.09805] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P. Pietrulewicz, D. Samitz, A. Spiering and F.J. Tackmann, Factorization and Resummation for Massive Quark Effects in Exclusive Drell-Yan, JHEP 08 (2017) 114 [arXiv:1703.09702] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].
  55. [55]
    M. Jankowiak and A.J. Larkoski, Jet Substructure Without Trees, JHEP 06 (2011) 057 [arXiv:1104.1646] [INSPIRE].
  56. [56]
    A.J. Larkoski, G.P. Salam and J. Thaler, Energy Correlation Functions for Jet Substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].
  57. [57]
    C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and Resummation for Dijet Invariant Mass Spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].
  58. [58]
    B. Dehnadi, Heavy quark mass determinations with sum rules and jets, Ph.D. Thesis, University of Vienna, Vienna Austria (2016).Google Scholar
  59. [59]
    A.H. Hoang, C. Lepenik and M. Stahlhofen, Two-Loop Massive Quark Jet Functions in SCET, arXiv:1904.12839 [INSPIRE].
  60. [60]
    I. Moult, L. Necib and J. Thaler, New Angles on Energy Correlation Functions, JHEP 12 (2016) 153 [arXiv:1609.07483] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A.J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].
  62. [62]
    S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock and B.R. Webber, New clustering algorithm for multijet cross sections in e + e annihilation, Phys. Lett. B 269 (1991) 432 [INSPIRE].
  63. [63]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].
  65. [65]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].
  66. [66]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  67. [67]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in proceedings of the Workshop on Monte Carlo Generators for HERA Physics (Plenary Starting Meeting), Hamburg, Germany, 27-30 April 1998, pp. 270-279 [hep-ph/9907280] [INSPIRE].
  68. [68]
    M. Wobisch, Measurement and QCD analysis of jet cross-sections in deep inelastic positron proton collisions at \( \sqrt{s} \) = 300 GeV, DESY-THESIS-2000-049 (2000) [INSPIRE].
  69. [69]
    G. Salam, \( {E}_t^{\infty } \) Scheme, unpublished.Google Scholar
  70. [70]
    D. Bertolini, T. Chan and J. Thaler, Jet Observables Without Jet Algorithms, JHEP 04 (2014) 013 [arXiv:1310.7584] [INSPIRE].
  71. [71]
    C.W. Bauer, S.P. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  72. [72]
    C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
  73. [73]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  74. [74]
    C.W. Bauer, S.P. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].
  75. [75]
    M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
  76. [76]
    A.V. Manohar and M.B. Wise, Heavy quark physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10 (2000) 1 [INSPIRE].
  77. [77]
    N. Isgur and M.B. Wise, Weak Decays of Heavy Mesons in the Static Quark Approximation, Phys. Lett. B 232 (1989) 113 [INSPIRE].
  78. [78]
    N. Isgur and M.B. Wise, Weak transition form-factors between heavy mesons, Phys. Lett. B 237 (1990) 527 [INSPIRE].
  79. [79]
    P. Pietrulewicz, F.J. Tackmann and W.J. Waalewijn, Factorization and Resummation for Generic Hierarchies between Jets, JHEP 08 (2016) 002 [arXiv:1601.05088] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    Y.-T. Chien, A. Hornig and C. Lee, Soft-collinear mode for jet cross sections in soft collinear effective theory, Phys. Rev. D 93 (2016) 014033 [arXiv:1509.04287] [INSPIRE].
  81. [81]
    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Effective Field Theory for Jet Processes, Phys. Rev. Lett. 116 (2016) 192001 [arXiv:1508.06645] [INSPIRE].
  82. [82]
    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Factorization and Resummation for Jet Processes, JHEP 11 (2016) 019 [Erratum JHEP 05 (2017) 154] [arXiv:1605.02737] [INSPIRE].ADSzbMATHGoogle Scholar
  83. [83]
    D.W. Kolodrubetz, P. Pietrulewicz, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization for Jet Radius Logarithms in Jet Mass Spectra at the LHC, JHEP 12 (2016) 054 [arXiv:1605.08038] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    S.D. Ellis, A. Hornig, C. Lee, C.K. Vermilion and J.R. Walsh, Consistent Factorization of Jet Observables in Exclusive Multijet Cross-Sections, Phys. Lett. B 689 (2010) 82 [arXiv:0912.0262] [INSPIRE].
  85. [85]
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].
  86. [86]
    A.K. Leibovich, Z. Ligeti and M.B. Wise, Comment on quark masses in SCET, Phys. Lett. B 564 (2003) 231 [hep-ph/0303099] [INSPIRE].
  87. [87]
    Y. Makris, D. Neill and V. Vaidya, Probing Transverse-Momentum Dependent Evolution With Groomed Jets, JHEP 07 (2018) 167 [arXiv:1712.07653] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    L.G. Almeida, S.D. Ellis, C. Lee, G.F. Sterman, I. Sung and J.R. Walsh, Comparing and counting logs in direct and effective methods of QCD resummation, JHEP 04 (2014) 174 [arXiv:1401.4460] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].
  90. [90]
    T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].
  91. [91]
    T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].
  92. [92]
    G. Bell, A. Hornig, C. Lee and J. Talbert, e + e angularity distributions at NNLLaccuracy, JHEP 01 (2019) 147 [arXiv:1808.07867] [INSPIRE].
  93. [93]
    Y.L. Dokshitzer and B.R. Webber, Calculation of power corrections to hadronic event shapes, Phys. Lett. B 352 (1995) 451 [hep-ph/9504219] [INSPIRE].
  94. [94]
    Y.L. Dokshitzer and B.R. Webber, Power corrections to event shape distributions, Phys. Lett. B 404 (1997) 321 [hep-ph/9704298] [INSPIRE].
  95. [95]
    M. Dasgupta and G.P. Salam, Event shapes in e + e annihilation and deep inelastic scattering, J. Phys. G 30 (2004) R143 [hep-ph/0312283] [INSPIRE].
  96. [96]
    C. Lee and G.F. Sterman, Momentum Flow Correlations from Event Shapes: Factorized Soft Gluons and Soft-Collinear Effective Theory, Phys. Rev. D 75 (2007) 014022 [hep-ph/0611061] [INSPIRE].
  97. [97]
    C. Lee and G.F. Sterman, Universality of nonperturbative effects in event shapes, eConf C 0601121 (2006) A001 [hep-ph/0603066] [INSPIRE].
  98. [98]
    F.R. Ore Jr. and G.F. Sterman, An operator approach to weighted cross-sections, Nucl. Phys. B 165 (1980) 93 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  99. [99]
    N.A. Sveshnikov and F.V. Tkachov, Jets and quantum field theory, Phys. Lett. B 382 (1996) 403 [hep-ph/9512370] [INSPIRE].
  100. [100]
    G.P. Korchemsky, G. Oderda and G.F. Sterman, Power corrections and nonlocal operators, AIP Conf. Proc. 407 (1997) 988 [hep-ph/9708346] [INSPIRE].
  101. [101]
    G.P. Korchemsky and G.F. Sterman, Power corrections to event shapes and factorization, Nucl. Phys. B 555 (1999) 335 [hep-ph/9902341] [INSPIRE].
  102. [102]
    A.V. Belitsky, G.P. Korchemsky and G.F. Sterman, Energy flow in QCD and event shape functions, Phys. Lett. B 515 (2001) 297 [hep-ph/0106308] [INSPIRE].
  103. [103]
    C.W. Bauer, S.P. Fleming, C. Lee and G.F. Sterman, Factorization of e + e Event Shape Distributions with Hadronic Final States in Soft Collinear Effective Theory, Phys. Rev. D 78 (2008) 034027 [arXiv:0801.4569] [INSPIRE].
  104. [104]
    A.V. Manohar, T. Mehen, D. Pirjol and I.W. Stewart, Reparameterization invariance for collinear operators, Phys. Lett. B 539 (2002) 59 [hep-ph/0204229] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretical DivisionLos AlamosU.S.A.
  2. 2.Department of PhysicsCarnegie Mellon UniversityPittsburghU.S.A.

Personalised recommendations